2,888 research outputs found

    Enhancing Optomechanical Coupling via the Josephson Effect

    Get PDF
    Cavity optomechanics is showing promise for studying quantum mechanics in large systems. However, the smallness of the radiation-pressure coupling is a serious hindrance. Here we show how the charge tuning of the Josephson inductance in a single-Cooper-pair transistor can be exploited to arrange a strong radiation-pressure-type coupling g0 between mechanical and microwave resonators. In a certain limit of parameters, such a coupling can also be seen as a qubit-mediated coupling of two resonators. We show that this scheme allows reaching extremely high g0. Contrary to the recent proposals for exploiting the nonlinearity of a large radiation-pressure coupling, the main nonlinearity in this setup originates from a cross-Kerr type of coupling between the resonators, where the cavity refractive index depends on the phonon number. The presence of this coupling will allow accessing the individual phonon numbers via the measurement of the cavity.Peer reviewe

    Macroscopic quantum tunneling in nanoelectromechanical systems

    Get PDF
    The experimental observation of quantum phenomena in mechanical degrees of freedom is difficult, as the systems become linear toward low energies and the quantum limit, and thus reside in the correspondence limit. Here we investigate how to access quantum phenomena in flexural nanomechanical systems which are strongly deflected by a voltage. Near a metastable point one can achieve a significant nonlinearity in the electromechanical potential at the scale of zero-point energy. The system can then escape from the metastable state via macroscopic quantum tunneling (MQT). We consider two model systems suspended atop a voltage gate, namely, a graphene sheet and a carbon nanotube. We find that the experimental demonstration of the phenomenon is currently possible but demanding, since the MQT crossover temperatures fall in the milli-Kelvin range. A carbon nanotube is suggested as the most promising system.Peer reviewe

    Luminous Infrared Galaxies with the Submillimeter Array: I. Survey Overview and the Central Gas to Dust Ratio

    Get PDF
    We present new data obtained with the Submillimeter Array for a sample of fourteen nearby luminous and ultraluminous infrared galaxies. The galaxies were selected to have luminosity distances D < 200 Mpc and far-infrared luminosities log(L_FIR) > 11.4. The galaxies were observed with spatial resolutions of order 1 kpc in the CO J=3-2, CO J=2-1, 13CO J=2-1, and HCO+ J=4-3 lines as well as the continuum at 880 microns and 1.3 mm. We have combined our CO and continuum data to measure an average gas-to-dust mass ratio of 120 +/- 28 (rms deviation 109) in the central regions of these galaxies, very similar to the value of 150 determined for the Milky Way. This similarity is interesting given the more intense heating from the starburst and possibly accretion activity in the luminous infrared galaxies compared to the Milky Way. We find that the peak H_2 surface density correlates with the far-infrared luminosity, which suggests that galaxies with higher gas surface densities inside the central kiloparsec have a higher star formation rate. The lack of a significant correlation between total H_2 mass and far-infrared luminosity in our sample suggests that the increased star formation rate is due to the increased availability of molecular gas as fuel for star formation in the central regions. In contrast to previous analyses by other authors, we do not find a significant correlation between central gas surface density and the star formation efficiency, as trace by the ratio of far-infrared luminosity to nuclear gas mass. Our data show that it is the star formation rate, not the star formation efficiency, that increases with increasing central gas surface density in these galaxies.Comment: 66 pages, 39 figures, aastex preprint format; to be published in ApJ Supplements. Version of paper with full resolution figures available at http://www.physics.mcmaster.ca/~wilson/www_xfer/ULIRGS_publi

    Metabolic profiling of alcohol consumption in 9778 young adults

    Get PDF
    Background: High alcohol consumption is a major cause of morbidity, yet alcohol is associated with both favourable and adverse effects on cardiometabolic risk markers. We aimed to characterize the associations of usual alcohol consumption with a comprehensive systemic metabolite profile in young adults. Methods: Cross-sectional associations of alcohol intake with 86 metabolic measures were assessed for 9778 individuals from three population-based cohorts from Finland (age 24-45 years, 52% women). Metabolic changes associated with change in alcohol intake during 6-year follow-up were further examined for 1466 individuals. Alcohol intake was assessed by questionnaires. Circulating lipids, fatty acids and metabolites were quantified by high-throughput nuclear magnetic resonance metabolomics and biochemical assays. Results: Increased alcohol intake was associated with cardiometabolic risk markers across multiple metabolic pathways, including higher lipid concentrations in HDL subclasses and smaller LDL particle size, increased proportions of monounsaturated fatty acids and decreased proportion of omega-6 fatty acids, lower concentrations of glutamine and citrate (P<0.001 for 56 metabolic measures). Many metabolic biomarkers displayed U-shaped associations with alcohol consumption. Results were coherent for men and women, consistent across the three cohorts and similar if adjusting for body mass index, smoking and physical activity. The metabolic changes accompanying change in alcohol intake during follow-up resembled the cross-sectional association pattern (R-2 = 0.83, slope = 0.7260.04). Conclusions: Alcohol consumption is associated with a complex metabolic signature, including aberrations in multiple biomarkers for elevated cardiometabolic risk. The metabolic signature tracks with long-term changes in alcohol consumption. These results elucidate the double-edged effects of alcohol on cardiovascular risk.Peer reviewe

    EpiMetal:an open-source graphical web browser tool for easy statistical analyses in epidemiology and metabolomics

    Get PDF
    MOTIVATION: An intuitive graphical interface that allows statistical analyses and visualizations of extensive data without any knowledge of dedicated statistical software or programming. IMPLEMENTATION: EpiMetal is a single-page web application written in JavaScript, to be used via a modern desktop web browser. GENERAL FEATURES: Standard epidemiological analyses and self-organizing maps for data-driven metabolic profiling are included. Multiple extensive datasets with an arbitrary number of continuous and category variables can be integrated with the software. Any snapshot of the analyses can be saved and shared with others via a www-link. We demonstrate the usage of EpiMetal using pilot data with over 500 quantitative molecular measures for each sample as well as in two large-scale epidemiological cohorts (N >10 000). AVAILABILITY: The software usage exemplar and the pilot data are open access online at [http://EpiMetal.computationalmedicine.fi]. MIT licensed source code is available at the Github repository at [https://github.com/amergin/epimetal]

    Three-Dimensional cryoEM Reconstruction of Native LDL Particles to 16 angstrom Resolution at Physiological Body Temperature

    Get PDF
    Background Low-density lipoprotein (LDL) particles, the major carriers of cholesterol in the human circulation, have a key role in cholesterol physiology and in the development of atherosclerosis. The most prominent structural components in LDL are the core-forming cholesteryl esters (CE) and the particle-encircling single copy of a huge, non-exchangeable protein, the apolipoprotein B-100 (apoB-100). The shape of native LDL particles and the conformation of native apoB-100 on the particles remain incompletely characterized at the physiological human body temperature (37°C). Methodology/Principal Findings To study native LDL particles, we applied cryo-electron microscopy to calculate 3D reconstructions of LDL particles in their hydrated state. Images of the particles vitrified at 6°C and 37°C resulted in reconstructions at ~16 Å resolution at both temperatures. 3D variance map analysis revealed rigid and flexible domains of lipids and apoB-100 at both temperatures. The reconstructions showed less variability at 6°C than at 37°C, which reflected increased order of the core CE molecules, rather than decreased mobility of the apoB-100. Compact molecular packing of the core and order in a lipid-binding domain of apoB-100 were observed at 6°C, but not at 37°C. At 37°C we were able to highlight features in the LDL particles that are not clearly separable in 3D maps at 6°C. Segmentation of apoB-100 density, fitting of lipovitellin X-ray structure, and antibody mapping, jointly revealed the approximate locations of the individual domains of apoB-100 on the surface of native LDL particles. Conclusions/Significance Our study provides molecular background for further understanding of the link between structure and function of native LDL particles at physiological body temperature.Peer reviewe
    • …
    corecore