184 research outputs found

    The size of triangulations supporting a given link

    Full text link
    Let T be a triangulation of S^3 containing a link L in its 1-skeleton. We give an explicit lower bound for the number of tetrahedra of T in terms of the bridge number of L. Our proof is based on the theory of almost normal surfaces.Comment: Published by Geometry and Topology at http://www.maths.warwick.ac.uk/gt/GTVol5/paper13.abs.htm

    Kinematic magnetic resonance imaging study of the brain stem and cervical cord by dynamic neck motion

    Get PDF
    Background: The aim was to examine the position of the brain stem and cervical cord following the neck flexion and extension. Materials and methods: The serial sagittal T2-weighted magnetic resonance imaging (MRI) sections of the cervical cord and brain stem were made in 6 volunteers. The images were mainly used to measure certain distances and angles of the brain stem and cervical cord in the neutral position, and then following the head and neck flexion and extension. Results: The measurements showed that the pons is slightly closer to the clivus following the neck flexion; the medulla oblongata is somewhat distant to the basion but closer to the odontoid process. At the same time, the spino-medullary angle diminishes in size. On the other hand, the upper cervical cord slightly approaches the posterior wall of the spinal canal, the lower cervical cord is closer to the anterior wall, while the angle between them is significantly larger in size. After the cervical cord extension, the rostral pons is somewhat distant to the clivus, whereas the caudal pons and the medulla are slightly closer to the clivus and the basion. At the same time, the spino-medullary angle diminishes in size. The cervical cord is mainly closer to the posterior wall of the spinal canal, whilst its angle is significantly smaller. Conclusions: The obtained results regarding the brain stem and cervical cord motion can be useful in the kinetic MRI examination of certain congenital disorders, degenerative diseases, and traumatic injuries of the craniovertebral junction and the cervical spine

    Local time and the pricing of time-dependent barrier options

    Full text link
    A time-dependent double-barrier option is a derivative security that delivers the terminal value ϕ(ST)\phi(S_T) at expiry TT if neither of the continuous time-dependent barriers b_\pm:[0,T]\to \RR_+ have been hit during the time interval [0,T][0,T]. Using a probabilistic approach we obtain a decomposition of the barrier option price into the corresponding European option price minus the barrier premium for a wide class of payoff functions ϕ\phi, barrier functions b±b_\pm and linear diffusions (St)t[0,T](S_t)_{t\in[0,T]}. We show that the barrier premium can be expressed as a sum of integrals along the barriers b±b_\pm of the option's deltas \Delta_\pm:[0,T]\to\RR at the barriers and that the pair of functions (Δ+,Δ)(\Delta_+,\Delta_-) solves a system of Volterra integral equations of the first kind. We find a semi-analytic solution for this system in the case of constant double barriers and briefly discus a numerical algorithm for the time-dependent case.Comment: 32 pages, to appear in Finance and Stochastic

    Robust pricing and hedging of double no-touch options

    Full text link
    Double no-touch options, contracts which pay out a fixed amount provided an underlying asset remains within a given interval, are commonly traded, particularly in FX markets. In this work, we establish model-free bounds on the price of these options based on the prices of more liquidly traded options (call and digital call options). Key steps are the construction of super- and sub-hedging strategies to establish the bounds, and the use of Skorokhod embedding techniques to show the bounds are the best possible. In addition to establishing rigorous bounds, we consider carefully what is meant by arbitrage in settings where there is no {\it a priori} known probability measure. We discuss two natural extensions of the notion of arbitrage, weak arbitrage and weak free lunch with vanishing risk, which are needed to establish equivalence between the lack of arbitrage and the existence of a market model.Comment: 32 pages, 5 figure

    Antioxidant and Antimicrobial Activity of Some Tetradentate Schiff Bases and Their Cu(II) Complexes

    Get PDF
    Schiff bases, and their Cu(II) complexes, are known for their biological activity. In this work, antibacterial activity against Gram-negative strains of Escherichia coli, Pseudomonas aeruginosa and Staphylococcus pyogenes, as well as Gram-positive Staphylococcus pyogenes and Pseudomonas aeruginosa was studied, together with antifungal activity against Candida, Aspergillus, and Mucor strains. Also, technically simple, and rapid tests like ABTS, HORAC, and ORAC were used to investigate the antioxidant activity in order to compare obtained results with different type of tests

    Biocatalyzed C-C bond formation for the production of alkaloids

    Get PDF
    Traditional methods of chemical synthesis of alkaloids exhibit various problems such as lack of enantioselectivity, the use of toxic chemical and intermediates, and multiple numbers of synthetic steps. Consequently, various enzymatic methods for the formation of C-C bonds in the alkaloid skeleton have been developed. Herein, we report advances achieved in the enzymatic or chemo-enzymatic synthesis of pharmaceutically important alkaloids that employ three C-C bond forming enzymes: two Pictet-Spenglerases and the oxidative C-C bond forming flavoenzyme Berberine Bridge Enzyme. Protein engineering studies, improving the substrate scope of these enzymes, and thereby leading to the synthesis of non-natural alkaloids possessing higher or newer pharmacological activities, are also discussed. Furthermore, the integration of these biocatalysts with other enzymes, in multi-enzymatic cascades for the enantioselective synthesis of alkaloids, is also reviewed. Current results suggest that these enzymes hold great promise for the generation of C-C bonds in the selective synthesis of alkaloid compounds possessing diverse pharmacological properties

    Fusion Hindrance and Quadrupole Collectivity in Collisions of A≃50 Nuclei: The Case of 48Ti + 58Fe

    Get PDF
    International audience; The fusion excitation function of Ti-48 + Fe-58 has been measured in a wide energy range around the Coulomb barrier, covering 6 orders of magnitude of the cross sections. We present here the preliminary results of this experiment, and a full comparison with the near-by system Ni-58 + Fe-54 where evidence of fusion hindrance shows up at relatively high cross sections. The sub-barrier cross sections of Ti-48 + Fe-58 are much larger than those of Ni-58 + Fe-54. Significant differences are also observed in the logarithmic derivatives, astrophysical S-factors and fusion barrier distributions. The influence of low-energy nuclear structure on all these trends is pointed out and commented. Coupled-channels calculations using a Woods-Saxon potential are able to reproduce the experimental results for Ti-48 + Fe-58. The logarithmic derivative of the excitation function is very nicely fit, and no evidence of hindrance is observed down to around 1 mu b. The fusion barrier distribution is rather wide, flat and structureless. It is only in qualitative agreement with the calculated distribution

    Study of interstrip gap effects and efficiency for full energy detection of Double Sided Silicon Strip Detectors

    Get PDF
    In this work is reported a study on the response of double sided silicon strip detectors. In order to investigate the effect of the electrode segmentation on the detector response, two experiments were performed aimed to measure the efficiency for full energy detection. Results show that the efficiency for full energy detection, that is directly related to effective width of the inter-strip region, varies with both detected ion energy and bias voltage. The experimental results are qualitatively reproduced by a simplified model based on the Shockley-Ramo-Gunn framework

    Transfer Reaction Studies with Spectrometers

    Get PDF
    The revival of transfer reaction studies benefited from the construction of the new generation large solid angle spectrometers, coupled to large gamma arrays. The recent results of gamma-particle coincident measurements in Ca-40+Zr-96 and Ar-40+Pb-208 reactions demonstrate a strong interplay between single-particle and collective degrees of freedom that is pertinent to the reaction dynamics. The development of collectivity has been followed in odd Ar isotopes populated in the Ar-40+Pb-208 reaction through the excitation of the 11/2(-) states, understood as the coupling of single particle degrees of freedom to nuclear vibration quanta. Pair transfer modes is another important degree of freedom which is presently being studied with Prisma in inverse kinematics at energies far below the Coulomb barrier. First results from the Zr-96+Ca-40 reaction elucidate the role played by nucleon-nucleon correlation

    Drug Delivery System for Emodin Based on Mesoporous Silica SBA-15.

    Get PDF
    In this study mesoporous silica SBA-15 was evaluated as a vehicle for the transport of cytotoxic natural product emodin (EO). SBA-15 was loaded with different quantities of EO (SBA-15|EO1⁻SBA-15|EO5: 8⁻36%) and characterized by traditional methods. Several parameters (stabilities) and the in vitro behavior on tumor cell lines (melanoma A375, B16 and B16F10) were investigated. SBA-15 suppresses EO release in extremely acidic milieu, pointing out that EO will not be discharged in the stomach. Furthermore, SBA-15 protects EO from photodecomposition. In vitro studies showed a dose dependent decrease of cellular viability which is directly correlated with an increasing amount of EO in SBA-15 for up to 27% of EO, while a constant activity for 32% and 36% of EO in SBA-15 was observed. Additionally, SBA-15 loaded with EO (SBA-15|EO3) does not disturb viability of peritoneal macrophages. SBA-15|EO3 causes inhibition of tumor cell proliferation and triggers apoptosis, connected with caspase activation, upregulation of Bax, as well as Bcl-2 and Bim downregulation along with amplification of poly-(ADP-ribose)-polymerase (PARP) cleavage fragment. Thus, the mesoporous SBA-15 is a promising carrier of the water-insoluble drug emodin
    corecore