99 research outputs found

    Standardization and Validation of Brachytherapy Seeds'' Modelling Using GATE and GGEMS Monte Carlo Toolkits

    Get PDF
    Simple Summary:& nbsp;This study used GATE and GGEMS simulation toolkits, to estimate dose distribution on Brachytherapy procedures. Specific guidelines were followed as defined by the American Association of Physicists in Medicine (AAPM) as well as by the European SocieTy for Radiotherapy and Oncology (ESTRO). Several types of brachytherapy seeds were modelled and simulated, namely Low-Dose-Rate (LDR), High-Dose-Rate (HDR), and Pulsed-Dose-Rate (PDR). The basic difference between GATE and GGEMS is that GGEMS incorporates GPU capabilities, which makes the use of Monte Carlo (MC) simulations more accessible in clinical routine, by minimizing the computational time to obtain a dose map. During the validation procedure of both codes with protocol data, differences as well as uncertainties were measured within the margins defined by the guidelines. The study concluded that MC simulations may be utilized in clinical practice, to optimize dose distribution in real time, as well as to evaluate therapeutic plans.This study aims to validate GATE and GGEMS simulation toolkits for brachytherapy applications and to provide accurate models for six commercial brachytherapy seeds, which will be freely available for research purposes. The AAPM TG-43 guidelines were used for the validation of two Low Dose Rate (LDR), three High Dose Rate (HDR), and one Pulsed Dose Rate (PDR) brachytherapy seeds. Each seed was represented as a 3D model and then simulated in GATE to produce one single Phase-Space (PHSP) per seed. To test the validity of the simulations'' outcome, referenced data (provided by the TG-43) was compared with GATE results. Next, validation of the GGEMS toolkit was achieved by comparing its outcome with the GATE MC simulations, incorporating clinical data. The simulation outcomes on the radial dose function (RDF), anisotropy function (AF), and dose rate constant (DRC) for the six commercial seeds were compared with TG-43 values. The statistical uncertainty was limited to 1% for RDF, to 6% (maximum) for AF, and to 2.7% (maximum) for the DRC. GGEMS provided a good agreement with GATE when compared in different situations: (a) Homogeneous water sphere, (b) heterogeneous CT phantom, and (c) a realistic clinical case. In addition, GGEMS has the advantage of very fast simulations. For the clinical case, where TG-186 guidelines were considered, GATE required 1 h for the simulation while GGEMS needed 162 s to reach the same statistical uncertainty. This study produced accurate models and simulations of their emitted spectrum of commonly used commercial brachytherapy seeds which are freely available to the scientific community. Furthermore, GGEMS was validated as an MC GPU based tool for brachytherapy. More research is deemed necessary for the expansion of brachytherapy seed modeling

    Hand Extension Robot Orthosis (HERO) Grip Glove: enabling independence amongst persons with severe hand impairments after stroke

    Get PDF
    Background The Hand Extension Robot Orthosis (HERO) Grip Glove was iteratively designed to meet requests from therapists and persons after a stroke who have severe hand impairment to create a device that extends all five fingers, enhances grip strength and is portable, lightweight, easy to put on, comfortable and affordable. Methods Eleven persons who have minimal or no active finger extension (Chedoke McMaster Stage of Hand 1–4) post-stroke were recruited to evaluate how well they could perform activities of daily living and finger function assessments with and without wearing the HERO Grip Glove. Results The 11 participants showed statistically significant improvements (p < 0.01), while wearing the HERO Grip Glove, in the water bottle grasp and manipulation task (increase of 2.3 points, SD 1.2, scored using the Chedoke Hand and Arm Inventory scale from 1 to 7) and in index finger extension (increase of 147o, SD 44) and range of motion (increase of 145o, SD 36). The HERO Grip Glove provided 12.7 N (SD 8.9 N) of grip force and 11.0 N (SD 4.8) of pinch force to their affected hands, which enabled those without grip strength to grasp and manipulate blocks, a fork and a water bottle, as well as write with a pen. The participants were ‘more or less satisfied’ with the HERO Grip Glove as an assistive device (average of 3.3 out of 5 on the Quebec User Evaluation of Satisfaction with Assistive Technology 2.0 Scale). The highest satisfaction scores were given for safety and security (4.6) and ease of use (3.8) and the lowest satisfaction scores were given for ease of donning (2.3), which required under 5 min with assistance. The most common requests were for greater grip strength and a smaller glove size for small hands. Conclusions The HERO Grip Glove is a safe and effective tool for enabling persons with a stroke that have severe hand impairment to incorporate their affected hand into activities of daily living, which may motivate greater use of the affected upper extremity in daily life to stimulate neuromuscular recovery

    Clinical commissioning of intensity-modulated proton therapy systems: Report of AAPM Task Group 185

    Get PDF
    Proton therapy is an expanding radiotherapy modality in the United States and worldwide. With the number of proton therapy centers treating patients increasing, so does the need for consistent, high-quality clinical commissioning practices. Clinical commissioning encompasses the entire proton therapy system\u27s multiple components, including the treatment delivery system, the patient positioning system, and the image-guided radiotherapy components. Also included in the commissioning process are the x-ray computed tomography scanner calibration for proton stopping power, the radiotherapy treatment planning system, and corresponding portions of the treatment management system. This commissioning report focuses exclusively on intensity-modulated scanning systems, presenting details of how to perform the commissioning of the proton therapy and ancillary systems, including the required proton beam measurements, treatment planning system dose modeling, and the equipment needed

    Ambient-aware continuous care through semantic context dissemination

    Get PDF
    Background: The ultimate ambient-intelligent care room contains numerous sensors and devices to monitor the patient, sense and adjust the environment and support the staff. This sensor-based approach results in a large amount of data, which can be processed by current and future applications, e. g., task management and alerting systems. Today, nurses are responsible for coordinating all these applications and supplied information, which reduces the added value and slows down the adoption rate. The aim of the presented research is the design of a pervasive and scalable framework that is able to optimize continuous care processes by intelligently reasoning on the large amount of heterogeneous care data. Methods: The developed Ontology-based Care Platform (OCarePlatform) consists of modular components that perform a specific reasoning task. Consequently, they can easily be replicated and distributed. Complex reasoning is achieved by combining the results of different components. To ensure that the components only receive information, which is of interest to them at that time, they are able to dynamically generate and register filter rules with a Semantic Communication Bus (SCB). This SCB semantically filters all the heterogeneous care data according to the registered rules by using a continuous care ontology. The SCB can be distributed and a cache can be employed to ensure scalability. Results: A prototype implementation is presented consisting of a new-generation nurse call system supported by a localization and a home automation component. The amount of data that is filtered and the performance of the SCB are evaluated by testing the prototype in a living lab. The delay introduced by processing the filter rules is negligible when 10 or fewer rules are registered. Conclusions: The OCarePlatform allows disseminating relevant care data for the different applications and additionally supports composing complex applications from a set of smaller independent components. This way, the platform significantly reduces the amount of information that needs to be processed by the nurses. The delay resulting from processing the filter rules is linear in the amount of rules. Distributed deployment of the SCB and using a cache allows further improvement of these performance results

    Ethical framework of assistive devices: review and reflection

    Get PDF
    The population of ageing is growing significantly over the world, and there is an emerging demand for better healthcare services and more care centres. Innovations of Information and Communication Technology has resulted in development of various types of assistive robots to fulfil elderly’s needs and independency, whilst carrying out daily routine tasks. This makes it vital to have a clear understanding of elderly’s needs and expectations from assistive robots. This paper addresses current ethical issues to understand elderly’s prime needs. Also, we consider other general ethics with the purpose of applying these theories to form a proper ethics framework. In the ethics framework, the ethical concerns of senior citizens will be prioritized to satisfy elderly’s needs and also to diminish related expenses to healthcare services

    IMRT QA

    No full text

    The South Australian dental labour force

    No full text
    174024503 ISBN on itemDana N. Teusner, Suzanna Mihailidis, Knute D. Carter and A. John Spence
    • …
    corecore