382 research outputs found

    The effects of cadmium or zinc multigenerational exposure on metal tolerance of Spodoptera exigua (Lepidoptera: Noctuidae)

    Get PDF
    The effects of ten generational zinc or cadmium pre-exposure on metal tolerance among beet armyworm Spodoptera exigua individuals were compared. These effects were assessed in animals from the 11th generation, reared on a diet either uncontaminated or contaminated with metal (cadmium or zinc). The survival rate of larvae and the degree of metal accumulation (in larvae, pupae and moths; among larval organs: gut and fat body) were analysed. Catalase, superoxide dismutase and glutathione transferase activity in larval organs of individuals subjected to different metal treatments were also measured. Animals transferred from control rearing to metals (cadmium or zinc) in the 11th generation, as well as those from multigenerational zinc treatment, but not from multigenerational cadmium treatment, had a significantly lower survival rate than control animals. Insects from the groups with the high metal treatment had high bioaccumulation factors (above 3.7 and 2.3 following cadmium and zinc, respectively). Cadmium (but not zinc) pre-exposure had a significant effect on metal accumulation in larvae. Multigenerational metal pre-exposure seemed to have mainly a negative effect on glutathione transferase activity in the gut of larvae from the 11th generation, in the case of the individuals exposed to metal other than that used in pre-exposure treatment or kept in control conditions. However, in the case of zinc pre-exposure, such effect was only apparent when zinc was replaced by cadmium. The long-term effect of cadmium on catalase activity in larvae was found

    The glycolytic enzymes activity in the midgut of diabrotica virgifera virgifera (Coleoptera: Chrysomelidae) adult and their seasonal changes

    Get PDF
    The western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae) is an important pest of maize. The diet of the D. virgifera imago is rich in starch and other polysaccharides present in cereals such as maize. Therefore, knowledge about enzymes involved in digestion of such specific food of this pest seems to be important. The paper shows, for the first time, the activities of main glycolytic enzymes in the midgut of D. virgifera imago: endoglycosidases (a-amylase, cellulase, chitinase, licheninase, laminarinase); exoglycosidases (a- and b-glucosidases, a- and b-galactosidases) and disaccharidases (maltase, isomaltase, sucrase, trehalase, lactase, and cellobiase). Activities of a-amylase, a-glucosidase, and maltase were the highest among assayed endoglycosidases, exoglycosidases, and disaccharidases, respectively. This indicates that in the midgut of D. virgifera imago a-amylase, a-glucosidase and maltase are important enzymes in starch hydrolysis and products of its digestion. These results lead to conclusion that inhibition of most active glycolytic enzymes of D. virgifera imago may be another promising method for chemical control of this pest of maize

    Differentiation of regenerative cells in the midgut epithelium of epilachna cf. nylanderi (Mulsant 1850) (insecta, coleoptera, coccinellidae)

    Get PDF
    Differentiation of regenerative cells in the midgut epithelium of Epilachna cf. nylanderi (Mulsant 1850) (Insecta, Coleoptera, Coccinellidae), a consumer of the Ni-hyperaccumulator Berkheya coddii (Asteracae) from South Africa, has been monitored and described. Adult specimens in various developmental phaseswere studiedwith the use of lightmicroscopy and transmission electron microscopy. All degenerated epithelial cells are replaced by newly differentiated cells. They originate from regenerative cells which act as stem cells in the midgut epithelium. Just after pupal-adult transformation, the midgut epithelium of E. nylanderi is composed of columnar epithelial cells and isolated regenerative cells distributed among them. The regenerative cells proliferate intensively and form regenerative cell groups. In each regenerative cell group the majority of cells differentiate into new epithelial cells, while some of them still act as stem cells and persist as a reservoir of cells capable for proliferation and differentiation. Because this species is an obligate monophage of plants which accumulate nickel, proliferation and differentiation

    SEM-EDS and X-ray micro computed tomography studies of skeletal surface pattern and body structure in the freshwater sponge Spongilla lacustris collected from Goczalkowice reservoir habit (Southern Poland)

    Get PDF
    Introduction. Freshwater sponges are common animals of most aquatic ecosystems. They feed by filtering small particles from the water, and so are thought to be sensitive indicators of pollution. Sponges are strongly associated with the abiotic environment and are therefore used as bioindicators for monitoring of water quality in water habitats. Among the freshwater sponges, Spongilla lacustris is one of the classic models used to study evolution, gene regulation, development, physiology and structural biology in animal water systems. It is also important in diagnostic of aquatic environments. The aim of this study was to characterize and visualize three-dimensional architecture of sponge body and measure skeleton elements of S. lacustris from Goczalkowice reservoir for identification purposes. Material and methods. The scanning electron microscopy with an energy dispersive X-ray microanalysis (SEM- -EDS) and X-ray micro computed tomography (micro-CT) were used to provide non-invasive visualization of the three-dimensional architecture of Spongilla lacustris body. Results. We showed that sponge skeleton was not homogeneous in composition and comprised several forms of skeleton organization. Ectosomal skeleton occurred as spicular brushes at apices of primary fibres with cementing spongin material. Choanosomal skeletal architecture was alveolate with pauci- to multispicular primary fibres connected by paucispicular transverse fibres, made by megascleres embedded in a scanty spongin matrix both in the choanosome and at the sponge surface. In contrast, microscleres were irregularly scattered in choanosome and skeletal surface. Furthermore, SEM-EDS studies showed that the distribution of silica in megascleres and microscleres was observed along the spicules and sponge surface areas. Conclusions. In conclusion, we showed that the combination of SEM-EDS and micro-CT microscopy techniques allowed obtaining a complete picture of the sponge spatial architecture

    SEM-EDS and X-ray micro Computed Tomography studies of skeletal surface pattern and body structure in the freshwater sponge Spongilla lacustris collected from Goczalkowice reservoir habit (Southern Poland)

    Get PDF
    Introduction. Freshwater sponges are common animals of most aquatic ecosystems. They feed by filtering small particles from the water, and so are thought to be sensitive indicators of pollution. Sponges are strongly associated with the abiotic environment and are therefore used as bioindicators for monitoring of water quality in water habitats. Among the freshwater sponges, Spongilla lacustris is one of the classic models used to study evolution, gene regulation, development, physiology and structural biology in animal water systems. It is also important in diagnostic of aquatic environments. The aim of this study was to characterize and visualize three-dimensional architecture of sponge body and measure skeleton elements of S. lacustris from Goczalkowice reservoir for identification purposes. Material and methods. The scanning electron microscopy with an energy dispersive X-ray microanalysis (SEM- -EDS) and X-ray micro computed tomography (micro-CT) were used to provide non-invasive visualization of the three-dimensional architecture of Spongilla lacustris body. Results. We showed that sponge skeleton was not homogeneous in composition and comprised several forms of skeleton organization. Ectosomal skeleton occurred as spicular brushes at apices of primary fibres with cementing spongin material. Choanosomal skeletal architecture was alveolate with pauci- to multispicular primary fibres connected by paucispicular transverse fibres, made by megascleres embedded in a scanty spongin matrix both in the choanosome and at the sponge surface. In contrast, microscleres were irregularly scattered in choanosome and skeletal surface. Furthermore, SEM-EDS studies showed that the distribution of silica in megascleres and microscleres was observed along the spicules and sponge surface areas. Conclusions. In conclusion, we showed that the combination of SEM-EDS and micro-CT microscopy techniques allowed obtaining a complete picture of the sponge spatial architecture

    Elemental Distribution in Reproductive and Neural Organs of the Epilachna nylanderi (Coleoptera: Coccinellidae), a Phytophage of Nickel Hyperaccumulator Berkheya coddii (Asterales: Asteraceae) by micro-PIXE

    Get PDF
    The phenomenon of metal hyperaccumulation by plants is often explained by a pathogen or herbivore defense hypothesis. However, some insects feeding on metal hyperaccumulating plants are adapted to the high level of metals in plant tissues. Former studies on species that feed on the leaves of Berkheya coddii Roessler 1958 (Asteraceae), a nickel-hyperaccumulating plant, demonstrated several protective mechanisms involved in internal distribution, immobilization, and elimination of Ni from the midgut and Malpighian tubules. These species are mainly coleopterans, including the lady beetle, Epilachna nylanderi (Mulsant 1850) (Coleoptera: Coccinellidae), collected from the ultramafic ecosystem near Barberton in South Africa. By performing particle-induced X-ray emission microanalysis elemental microanalysis (PIXE), this study examined whether Ni may be harmful to internal body systems that decide on insect reactivity (central nervous system [CNS]), their reproduction, and the relationships between Ni and other micronutrients. Data on elemental distribution of nine selected elements in target organs of E. nylanderi were compared with the existing data for other insect species adapted to the excess of metals. Micro-PIXE maps of seven regions of the CNS showed Ni mainly in the neural connectives, while cerebral ganglia were better protected. Concentrations of other bivalent metals were lower than those of Ni. Testis, compared with other reproductive organs, showed low amounts of Ni. Zn was effectively regulated at physiological dietary levels. In insects exposed to excess dietary Zn, it was also accumulated in the reproductive organs. Comparison of E. nylanderii with other insects that ingest hyperaccumulating plants, especially chrysomelid Chrysolina clathrata (Clark) (Coleoptera: Chrysomelidae), showed lower protection of the CNS and reproductive organs

    Mobile sailing robot for automatic estimation of fish density and monitoring water quality

    Get PDF
    Introduction: The paper presents the methodology and the algorithm developed to analyze sonar images focused on fish detection in small water bodies and measurement of their parameters: volume, depth and the GPS location. The final results are stored in a table and can be exported to any numerical environment for further analysis.Material and method: The measurement method for estimating the number of fish using the automatic robot is based on a sequential calculation of the number of occurrences of fish on the set trajectory. The data analysis from the sonar concerned automatic recognition of fish using the methods of image analysis and processing.Results: Image analysis algorithm, a mobile robot together with its control in the 2.4 GHz band and full cryptographic communication with the data archiving station was developed as part of this study. For the three model fish ponds where verification of fish catches was carried out (548, 171 and 226 individuals), the measurement error for the described method was not exceeded 8%.Summary: Created robot together with the developed software has features for remote work also in the variety of harsh weather and environmental conditions, is fully automated and can be remotely controlled using Internet. Designed system enables fish spatial location (GPS coordinates and the depth). The purpose of the robot is a non-invasive measurement of the number of fish in water reservoirs and a measurement of the quality of drinking water consumed by humans, especially in situations where local sources of pollution could have a significant impact on the quality of water collected for water treatment for people and when getting to these places is difficult. The systematically used robot equipped with the appropriate sensors, can be part of early warning system against the pollution of water used by humans (drinking water, natural swimming pools) which can be dangerous for their health

    Pseudomonas daroniae sp. nov. and Pseudomonas dryadis sp. nov., isolated from pedunculate oak affected by acute oak decline in the UK

    Get PDF
    Twenty-two cream-coloured bacterial strains were isolated from oak trees affected by acute oak decline (AOD) in Southern England. Isolates were Gram-negative, motile, slightly curved rods, aerobic, non-spore-forming, catalase positive and oxidase positive. 16S rRNA gene sequence analysis placed the strains in two separate phylogenetic clusters in the Pseudomonas straminea group, with Pseudomonas flavescens as the closest phylogenetic relative. Multilocus sequence analyses of the gyrB, rpoD and rpoB genes supported the delineation of the strains into two separate taxa, which could be differentiated phenotypically and chemotaxonomically from each other, and their closest relatives. Average nucleotide identity and in silico DNA-DNA hybridization values revealed percentages of genome similarity below the species threshold (95 and 70 %, respectively) between the two taxa and the closest relatives, confirming their novel species status. Therefore, on the basis of this polyphasic approach we propose two novel Pseudomonas species, Pseudomonasdaroniae sp. nov. (type strain FRB 228T=LMG 31087T=NCPPB 4672T) and Pseudomonasdryadis sp. nov. (type strain FRB 230T=LMG 31087T=NCPPB 4673T)

    Novel methylotrophic bacteria isolated from the River Thames (London, UK)

    Get PDF
    Enrichment and elective culture for methylotrophs from sediment of the River Thames in central London yielded a diversity of pure cultures representing several genera of Gram-negative and Gram-positive bacteria, which were mainly of organisms not generally regarded as typically methylotrophic. Substrates leading to successful isolations included methanol, monomethylamine, dimethylamine, trimethylamine, methanesulfonate and dimethylsulfone. Several isolates were studied in detail and shown by their biochemical and morphological properties and 16S rRNA gene sequencing to be Sphingomonas melonis strain ET35, Mycobacterium fluoranthenivorans strain DSQ3, Rhodococcus erythropolis strain DSQ4, Brevibacterium casei strain MSQ5, Klebsiella oxytoca strains MMA/F and MMA/1, Pseudomonas mendocina strain TSQ4, and Flavobacterium sp. strains MSA/1 and MMA/2. The results show that facultative methylotrophy is present across a wide range of Bacteria, suggesting that turnover of diverse C1-compounds is of much greater microbiological and environmental significance than is generally thought. The origins of the genes encoding the enzymes of methylotrophy in diverse heterotrophs need further study, and could further our understanding of the phylogeny and antiquity of methylotrophic systems
    corecore