82 research outputs found

    Wolf-Rayet Stars in Starburst Galaxies

    Full text link
    Wolf-Rayet stars have been detected in a large number of galaxies experiencing intense bursts of star formation. All stars initially more massive than a certain, metallicity-dependent, value are believed to experience the Wolf-Rayet phase at the end of their evolution, just before collapsing in supernova explosion. The detection of Wolf-Rayet stars puts therefore important constraints on the evolutionary status of starbursts, the properties of their Initial Mass Functions and their star formation regime. In this contribution we review the properties of galaxies hosting Wolf-Rayet stars, with special emphasis on the factors that determine their presence and evolution, as well as their impact on the surrounding medium.Comment: Contribution to the Proceedings of the JENAM 99 conference "The interplay between massive stars and the ISM", held in Toulouse in September 7-11, 1999. 10 pages, 5 figures. Requires elsart.cls latex macr

    Detection of a Super Star Cluster as the Ionizing Source in the Low Luminosity AGN NGC 4303

    Get PDF
    HST UV STIS imaging and spectroscopy of the low luminosity AGN (LLAGN) NGC 4303 have identified the previously detected UV-bright nucleus of this galaxy, as a compact, massive and luminous stellar cluster. The cluster with a size (FWHM) of 3.1 pc, and an ultraviolet luminosity log L (1500 A}(erg/s/A)= 38.33 is identified as a nuclear super star cluster (SSC) like those detected in the circumnuclear regions of spirals and starburst galaxies. The UV spectrum showing the characteristic broad P Cygni lines produced by the winds of massive young stars, is best fitted by the spectral energy distribution of a massive cluster of 1e5 Msol generated in an instantaneous burst 4 Myr ago. No evidence for an additional non-thermal ionizing source associated with an accreting black hole is detected in the ultraviolet. We hypothesize that at least some LLAGNs in spirals could be understood as the result of the combined ionizing radiation emitted by an evolving SSC and a black hole (BH) accreting with low radiative efficiency, coexisting in the inner few parsecs region.Comment: 4 figure

    On the influence of physical galaxy properties on Lyman-alpha escape in star-forming galaxies

    Get PDF
    [abridged] Among the different observational techniques used to select high-redshift galaxies, the hydrogen recombination line Lyman-alpha (Lya) is of particular interest as it gives access to the measurement of cosmological quantities such as the star formation rate of distant galaxy populations. However, the interpretation of this line and the calibration of such observables is still subject to serious uncertainties. Therefore, it important to understand under what conditions the Lya line can be used as a reliable star formation diagnostic tool. We use a sample of 24 Lya emitters at z ~ 0.3 with an optical spectroscopic follow-up to calculate the Lya escape fraction and its dependency upon different physical properties. We also examine the reliability of Lya as a star formation rate indicator. We combine these observations with a compilation of Lya emitters selected at z = 0 - 0.3 to assemble a larger sample. The Lya escape fraction depends clearly on the dust extinction following the relation fesc(Lya) = C(Lya) x 10^(-0.4 E(B-V) k(Lya)), but with a shallower slope than previously reported, with k(Lya) ~ 6.67 and C(Lya) = 0.22. However, the correlation does not follow the expected curve for a simple dust attenuation. We explore the various mechanisms than lead to fesc(Lya) values above the continuum extinction curve, i.e. to an enhancement of the Lya output. We also observe that the strength of Lya and the escape fraction appear unrelated to the galaxy metallicity. Regarding the reliability of Lya as a star formation rate (SFR) indicator, we show that the deviation of SFR(Lya) from the true SFR (as traced by the UV continuum) is a function of the observed SFR(UV), which can be seen as the decrease of fesc(Lya) with increasing UV luminosity. Moreover, we observe a redshift-dependence of this relationship revealing the underlying evolution of fesc(Lya) with redshift.Comment: 17 pages. Accepted for publicatio

    Empirical Estimate of Lyman-alpha Escape Fraction in a Statistical Sample of Lyman-alpha Emitters

    Full text link
    The Lyman-alpha (Lya) recombination line is a fundamental tool for galaxy evolution studies and modern observational cosmology. However, subsequent interpretations are still prone to a number of uncertainties. Besides numerical efforts, empirical data are urgently needed for a better understanding of Lya escape process. We empirically estimate the Lyman-alpha escape fraction fesc(Lya) in a statistically significant sample of z ~ 0 - 0.3 galaxies in order to calibrate high-redshift Lyman-alpha observations. An optical spectroscopic follow-up of a sub-sample of 24 Lyman-alpha emitters (LAEs) detected by GALEX at z ~ 0.2-0.3, combined with a UV-optical sample of local starbursts, both with matched apertures, allow us to quantify the dust extinction through Balmer lines, and to estimate the Lyman-alpha escape fraction from the Halpha flux corrected for extinction in the framework of the recombination theory. The global escape fraction of Lyman-alpha radiation spans nearly the entire range of values, from 0.5 to 100 %, and fesc(Lya) clearly decreases with increasing nebular dust extinction E(B-V). Several objects show fesc(Lya) greater than fesc(continuum) which may be an observational evidence for clumpy ISM geometry or for an aspherical ISM. Selection biases and aperture size effects may still prevail between z ~ 0.2-0.3 LAEs and local starbursts, which may explain the difference observed for fesc(Lya).Comment: 4 pages, 2 figures, accepted for publication in Astronomy and Astrophysic

    ORIGIN: metal creation and evolution from the cosmic dawn

    Get PDF
    Herder, Jan-Willem den et al.ORIGIN is a proposal for the M3 mission call of ESA aimed at the study of metal creation from the epoch of cosmic dawn. Using high-spectral resolution in the soft X-ray band, ORIGIN will be able to identify the physical conditions of all abundant elements between C and Ni to red-shifts of z = 10, and beyond. The mission will answer questions such as: When were the first metals created? How does the cosmic metal content evolve? Where do most of the metals reside in the Universe? What is the role of metals in structure formation and evolution? To reach out to the early Universe ORIGIN will use Gamma-Ray Bursts (GRBs) to study their local environments in their host galaxies. This requires the capability to slew the satellite in less than a minute to the GRB location. By studying the chemical composition and properties of clusters of galaxies we can extend the range of exploration to lower redshifts (z-0.2). For this task we need a high-resolution spectral imaging instrument with a large field of view. Using the same instrument, we can also study the so far only partially detected baryons in the Warm-Hot Intergalactic Medium (WHIM). The less dense part of the WHIM will be studied using absorption lines at low redshift in the spectra for GRBs. The ORIGIN mission includes a Transient Event Detector (coded mask with a sensitivity of 0.4 photon/cm2/s in 10 s in the 5–150 keV band) to identify and localize 2000 GRBs over a five year mission, of which -65 GRBs have a redshift > 7. The Cryogenic Imaging Spectrometer, with a spectral resolution of 2.5 eV, a field of view of 30 arcmin and large effective area below 1 keV has the sensitivity to study clusters up to a significant fraction of the virial radius and to map the denser parts of the WHIM (factor 30 higher than achievable with current instruments). The payload is complemented by a Burst InfraRed Telescope to enable onboard red-shift determination of GRBs (hence securing proper follow up of high-z bursts) and also probes the mildly ionized state of the gas. Fast repointing is achieved by a dedicated ControlledMomentum Gyro and a low background is achieved by the selected low Earth orbit.The team likes to express its appreciation for the support of Astrium UK for the present study.Peer Reviewe

    The escape of Lyman photons from a young starburst: the case of Haro 11

    Get PDF
    (Abridged) Lyman-alpha (Lya) is a dominant probe of the galaxy population at high-z. However, interpretation of data drawn from Lya alone hinges on the Lya escape fraction which, due to the complex radiative transport, may vary greatly. Here we map the Lya emission from local starburst Haro 11, a Lya emitter and the only known candidate for low-z Lyman continuum emission (LyC). To aid in the interpretation we perform a detailed multi-wavelength analysis and model the stellar population, dust distribution, ionising photon budget, and star-cluster population. We use archival X-ray observations to further constrain properties of the starburst and estimate the HI column density. The Lya morphology is found to be strongly decoupled from stellar and nebular (H-alpha) morphologies. General surface photometry finds only very slight correlation between Lya and H-halpha, E(B-V), and stellar age. Only around the central Lya-bright cluster do we find the Lya/Ha ratio at values predicted by recombination theory. The total Lya escape fraction is found to be just 3%. We compute that ~90% of the Lya photons that escape do so after undergoing multiple resonance scattering events, masking their point of origin. This leads to a largely symmetric distribution and, by increasing the distance that photons must travel to escape, decreases the escape probability significantly. While dust must ultimately be responsible for the destruction of Lya, it plays little role in governing the observed morphology, which is regulated more by ISM kinematics and geometry. We find tentative evidence for local Lya equivalent width in the immediate vicinity of star-clusters being a function of cluster age, consistent with hydrodynamic studies. We estimate the ionising photon production and further constrain the escape fraction at 900 AA to <~9% .Comment: In press for MNRAS. 18 pages, 9 figures. Version with full resolution images to be found at http://www.astro.su.se/~matthew/english/papers/hayes_lya_haro11_hires.pd

    On the contribution of ULXs to stellar feedback: an intermediate mass black hole candidate and the population of ULXs in the low-metallicity starburst galaxy ESO 338-4

    Full text link
    X-ray radiation from accreting compact objects is an important part of stellar feedback. The metal-poor galaxy ESO 338-4 has experienced vigorous starburst during the last 40 Myr and contains some of the most massive super star clusters in the nearby Universe. Given its starburst age and its star-formation rate, ESO 338-4 is one of the most efficient nearby manufactures of neutron stars and black holes, hence providing an excellent laboratory for feedback studies. We compared X-ray images and spectra obtained by XMM-Newton and Chandra telescopes with integral field spectroscopic VLT MUSE observations in the optical to constrain the nature of strong X-ray emitters. X-ray observations uncover three ultraluminous X-ray sources (ULXs) in ESO 338-4. The brightest among them, ESO 338~X-1, has X-ray luminosity in excess of 10^{40} erg/s. We speculate that ESO 338-4 is powered by accretion on an intermediate-mass (~300Msun) black hole. We show that X-ray radiation from ULXs and hot superbubbles strongly contributes to HeII ionization and general stellar feedback in this template starburst galaxy.Comment: A&A, in pres

    Continuum subtracting Lyman-alpha images: Low redshift studies using the Solar Blind Channel of HST/ACS

    Full text link
    [ABRIDGED] We are undertaking an imaging study of local star-forming galaxies in the Lyman-alpha (Lya) emission line using the Solar Blind Channel (SBC) of the ACS onboard the HST. Observations have been obtained in Lya and H-alpha (Ha) and 6 continuum filters between ~1500AA and the I-band. Previously (Hayes et al 2005) we demonstrated that the production of Lya line-only images in the SBC-only data-set is non-trivial and that supporting data is a requirement. We here develop various methods of continuum subtraction and assess their relative performance using a variety of spectral energy distributions (SED) as input. We conclude that simple assumptions about the behavior of the ultraviolet continuum consistently lead to results that are wildly erroneous, and determine that an SED fitting approach is essential. Moreover, a single component stellar or stellar+nebular spectrum is not always sufficient for realistic template SEDs and, in order to successfully recover the input observables, care must be taken to control contributions of nebular gas and underlying stellar populations. Independent measurements of the metallicity must first be obtained, but details of the initial mass function play only a small role. We identify the need to bin together pixels in our data to obtain signal-to-noise (S/N) of ~10 in each band before processing. At S/N=10 we can recover Lya fluxes accurate to ~30% for Lya lines with intrinsic equivalent width [W(Lya)] of 10AA. This accuracy improves to ~10% for W(Lya)=100AA. We describe the image processing applied to the observations presented in \"Ostlin et al. (2009) and the associated data-release. We also present simulations for an observing strategy for an alternative low-redshift SBC Lya imaging campaign using adjacent combinations of long-pass filters at slightly higher redshift.Comment: Accepted by the Astronomical Journa
    • 

    corecore