14,209 research outputs found

    Asymptotic Task-Based Quantization with Application to Massive MIMO

    Get PDF
    Quantizers take part in nearly every digital signal processing system which operates on physical signals. They are commonly designed to accurately represent the underlying signal, regardless of the specific task to be performed on the quantized data. In systems working with high-dimensional signals, such as massive multiple-input multiple-output (MIMO) systems, it is beneficial to utilize low-resolution quantizers, due to cost, power, and memory constraints. In this work we study quantization of high-dimensional inputs, aiming at improving performance under resolution constraints by accounting for the system task in the quantizers design. We focus on the task of recovering a desired signal statistically related to the high-dimensional input, and analyze two quantization approaches: We first consider vector quantization, which is typically computationally infeasible, and characterize the optimal performance achievable with this approach. Next, we focus on practical systems which utilize hardware-limited scalar uniform analog-to-digital converters (ADCs), and design a task-based quantizer under this model. The resulting system accounts for the task by linearly combining the observed signal into a lower dimension prior to quantization. We then apply our proposed technique to channel estimation in massive MIMO networks. Our results demonstrate that a system utilizing low-resolution scalar ADCs can approach the optimal channel estimation performance by properly accounting for the task in the system design

    Interplay between the Beale-Kato-Majda theorem and the analyticity-strip method to investigate numerically the incompressible Euler singularity problem

    Get PDF
    Numerical simulations of the incompressible Euler equations are performed using the Taylor-Green vortex initial conditions and resolutions up to 409634096^3. The results are analyzed in terms of the classical analyticity strip method and Beale, Kato and Majda (BKM) theorem. A well-resolved acceleration of the time-decay of the width of the analyticity strip δ(t)\delta(t) is observed at the highest resolution for 3.7<t<3.853.7<t<3.85 while preliminary 3D visualizations show the collision of vortex sheets. The BKM criterium on the power-law growth of supremum of the vorticity, applied on the same time-interval, is not inconsistent with the occurrence of a singularity around t4t \simeq 4. These new findings lead us to investigate how fast the analyticity strip width needs to decrease to zero in order to sustain a finite-time singularity consistent with the BKM theorem. A new simple bound of the supremum norm of vorticity in terms of the energy spectrum is introduced and used to combine the BKM theorem with the analyticity-strip method. It is shown that a finite-time blowup can exist only if δ(t)\delta(t) vanishes sufficiently fast at the singularity time. In particular, if a power law is assumed for δ(t)\delta(t) then its exponent must be greater than some critical value, thus providing a new test that is applied to our 409634096^3 Taylor-Green numerical simulation. Our main conclusion is that the numerical results are not inconsistent with a singularity but that higher-resolution studies are needed to extend the time-interval on which a well-resolved power-law behavior of δ(t)\delta(t) takes place, and check whether the new regime is genuine and not simply a crossover to a faster exponential decay

    X-ray image separation via coupled dictionary learning

    Get PDF
    In support of art investigation, we propose a new source sepa- ration method that unmixes a single X-ray scan acquired from double-sided paintings. Unlike prior source separation meth- ods, which are based on statistical or structural incoherence of the sources, we use visual images taken from the front- and back-side of the panel to drive the separation process. The coupling of the two imaging modalities is achieved via a new multi-scale dictionary learning method. Experimental results demonstrate that our method succeeds in the discrimination of the sources, while state-of-the-art methods fail to do so.Comment: To be presented at the IEEE International Conference on Image Processing (ICIP), 201

    Multi-modal dictionary learning for image separation with application in art investigation

    Get PDF
    In support of art investigation, we propose a new source separation method that unmixes a single X-ray scan acquired from double-sided paintings. In this problem, the X-ray signals to be separated have similar morphological characteristics, which brings previous source separation methods to their limits. Our solution is to use photographs taken from the front and back-side of the panel to drive the separation process. The crux of our approach relies on the coupling of the two imaging modalities (photographs and X-rays) using a novel coupled dictionary learning framework able to capture both common and disparate features across the modalities using parsimonious representations; the common component models features shared by the multi-modal images, whereas the innovation component captures modality-specific information. As such, our model enables the formulation of appropriately regularized convex optimization procedures that lead to the accurate separation of the X-rays. Our dictionary learning framework can be tailored both to a single- and a multi-scale framework, with the latter leading to a significant performance improvement. Moreover, to improve further on the visual quality of the separated images, we propose to train coupled dictionaries that ignore certain parts of the painting corresponding to craquelure. Experimentation on synthetic and real data - taken from digital acquisition of the Ghent Altarpiece (1432) - confirms the superiority of our method against the state-of-the-art morphological component analysis technique that uses either fixed or trained dictionaries to perform image separation.Comment: submitted to IEEE Transactions on Images Processin

    Defect-Seeded Atomic Layer Deposition of Metal Oxides on the Basal Plane of 2D Layered Materials

    Get PDF
    Atomic layer deposition (ALD) on mechanically exfoliated 2D layered materials spontaneously produces network patterns of metal oxide nanoparticles in triangular and linear deposits on the basal surface. The network patterns formed under a range of ALD conditions and were independent of the orientation of the substrate in the ALD reactor. The patterns were produced on MoS2 or HOPG when either tetrakis(dimethylamido)titanium or bis(ethylcyclopentadienyl)manganese were used as precursors, suggesting that the phenomenon is general for 2D materials. Transmission electron microscopy revealed the presence, prior to deposition, of dislocation networks along the basal plane of mechanically exfoliated 2D flakes, indicating that periodical basal plane defects related to disruptions in the van der Waals stacking of layers, such as perfect line dislocations and triangular extended stacking faults networks, introduce a surface reactivity landscape that leads to the emergence of patterned deposition

    Velocity fluctuations and hydrodynamic diffusion in sedimentation

    Get PDF
    We study non-equilibrium velocity fluctuations in a model for the sedimentation of non-Brownian particles experiencing long-range hydrodynamic interactions. The complex behavior of these fluctuations, the outcome of the collective dynamics of the particles, exhibits many of the features observed in sedimentation experiments. In addition, our model predicts a final relaxation to an anisotropic (hydrodynamic) diffusive state that could be observed in experiments performed over longer time ranges.Comment: 7 pages, 5 EPS figures, EPL styl

    The Sensitivity of First Generation Epoch of Reionization Observatories and Their Potential for Differentiating Theoretical Power Spectra

    Full text link
    Statistical observations of the epoch of reionization (EOR) power spectrum provide a rich data set for understanding the transition from the cosmic "dark ages" to the ionized universe we see today. EOR observations have become an active area of experimental cosmology, and three first generation observatories--MWA, PAST, and LOFAR--are currently under development. In this paper we provide the first quantitative calculation of the three dimensional power spectrum sensitivity, incorporating the design parameters of a planned array. This calculation is then used to explore the constraints these first generation observations can place on the EOR power spectrum. The results demonstrate the potential of upcoming power spectrum observations to constrain theories of structure formation and reionization.Comment: 7 pages with 5 figures. Submitted to Ap
    corecore