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Numerical simulations of the incompressible Euler equations are performed using the Taylor-Green vortex
initial conditions and resolutions up to 40963. The results are analyzed in terms of the classical analyticity-strip
method and Beale, Kato, and Majda (BKM) theorem. A well-resolved acceleration of the time decay of the
width of the analyticity strip δ(t) is observed at the highest resolution for 3.7 < t < 3.85 while preliminary
three-dimensional visualizations show the collision of vortex sheets. The BKM criterion on the power-law growth
of the supremum of the vorticity, applied on the same time interval, is not inconsistent with the occurrence of
a singularity around t � 4. These findings lead us to investigate how fast the analyticity-strip width needs to
decrease to zero in order to sustain a finite-time singularity consistent with the BKM theorem. A simple bound
of the supremum norm of vorticity in terms of the energy spectrum is introduced and used to combine the BKM
theorem with the analyticity-strip method. It is shown that a finite-time blowup can exist only if δ(t) vanishes
sufficiently fast at the singularity time. In particular, if a power law is assumed for δ(t) then its exponent must be
greater than some critical value, thus providing a new test that is applied to our 40963 Taylor-Green numerical
simulation. Our main conclusion is that the numerical results are not inconsistent with a singularity but that
higher-resolution studies are needed to extend the time interval on which a well-resolved power-law behavior of
δ(t) takes place and check whether the new regime is genuine and not simply a crossover to a faster exponential
decay.
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I. INTRODUCTION27

A central open question in classical fluid dynamics is28

whether the incompressible three-dimensional Euler equations29

with smooth initial conditions develop a singularity after a30

finite time. A key result was established in the late 1980s31

by Beale, Kato, and Majda (BKM). The BKM theorem [1]32

states that blowup (if it takes place) requires the time integral33

of the supremum of the vorticity to become infinite (see34

the review by Bardos and Titi [2]). Many studies have been35

performed using the BKM result to monitor the growth of36

the vorticity supremum in numerical simulations in order37

to conclude yes or no regarding the question of whether a38

finite-time singularity might develop. The answer is somewhat39

mixed; see, e.g., [3–5] and the recent review by Gibbon [6].40

Other conditional theoretical results, going beyond the BKM41

theorem, were obtained in a pioneering paper by Constantin,42

Fefferman, and Majda [7]. They showed that the evolution43

of the direction of vorticity posed geometric constraints on44

potentially singular solutions for the three-dimensional (3D)45

Euler equation [7]. This point of view was further developed46

by Deng, Hou, and Yu in [8] and [9].47

An alternative way to extract insights on the singular-48

ity problem from numerical simulations is the so-called49

analyticity-strip method [10]. In this method the time is50

considered as a real variable and the space coordinates are51

considered as complex variables. The so-called width of the52

analyticity strip δ(� 0) is defined as the imaginary part of53

the complex-space singularity of the velocity field nearest54

to the real space. The idea is to monitor δ(t) as a function 55

of time t . This method uses the rigorous result [11] that 56

a real-space singularity of the Euler equations occurring at 57

time T∗ must be preceded by a nonzero δ(t) that vanishes 58

at T∗. Using spectral methods [12], δ(t) is obtained directly 59

from the high-wave-number exponential falloff of the spatial 60

Fourier transform of the solution [13]. This method effectively 61

provides a “distance to the singularity” given by δ(t) [14], 62

which cannot be obtained from the general BKM theorem. 63

Note that the BKM theorem is more robust than the 64

analyticity-strip method in the sense that it applies to velocity 65

fields that do not need to be analytic. However, in the present 66

paper we will concentrate on initial conditions that are analytic. 67

In this case, there is a well-known result that states the follow- 68

ing: “In three dimensions with periodic boundary conditions 69

and analytic initial conditions, analyticity is preserved as long 70

as the velocity is continuously differentiable (C1) in the real 71

domain” [11]. The BKM theorem allows for a strengthening 72

of this result: analyticity is actually preserved as long as the 73

vorticity is finite [14]. 74

The analyticity-strip method has been applied to probe 75

the Euler singularity problem using standard periodic (and 76

analytical) initial data: the so-called Taylor-Green (TG) vortex 77

[15]. We now give a short review of what is already known 78

about the TG dynamics. Numerical simulations of the TG flow 79

were performed with resolution increasing over the years, 80

as more computing power became available. It was found 81

that, except for very short times and for as long as δ(t) can 82

be reliably measured, it displays almost perfect exponential 83
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decrease. Simulations performed in 1982 on a grid of 2563
84

points obtained δ(t) ∼ 2.60 e−t/0.57 (for t up to 2.5) [16]. This85

behavior was confirmed in 1992 at resolution 8643 [17]. More86

than 20 years after the first study, simulations performed on87

a grid of 20483 points yielded δ(t) ∼ 2.70 e−t/0.56 (for t up to88

3.7) [18]. If these results could be safely extrapolated to later89

times then the Taylor-Green vortex would never develop a real90

singularity [13].91

The present paper has two main goals. One is to report92

on and analyze new simulations of the TG vortex that are93

performed at resolution 40963. These new simulations show a94

well-resolved change of regime, leading to a faster decay of95

δ(t) happening at a time where preliminary 3D visualizations96

show the collision of vortex sheets.1 The second goal of this97

paper is to answer the following question, motivated by the new98

behavior of the TG vortex: how fast does the analyticity-strip99

width have to decrease to zero in order to sustain a finite-100

time singularity, consistent with the BKM theorem? To the101

best of our knowledge, this question has not been formulated102

previously.103

To answer this question we introduce a new bound of the104

supremum norm of vorticity in terms of the energy spectrum.105

We then use this bound to combine the BKM theorem with106

the analyticity-strip method. This new bound is sharper than107

usual bounds. We show that a finite-time blowup exists only if108

the analyticity-strip width goes to zero sufficiently fast at the109

singularity time. If a power-law behavior is assumed for δ(t)110

then its exponent must be greater than some critical value. In111

other words, we provide a powerful test that can potentially112

rule out the existence of a finite-time singularity in a given113

numerical solution of Euler equations. We apply this test to the114

data from the latest 40963 Taylor-Green numerical simulation115

in order to see if the change of behavior in δ(t) can be consistent116

with a singularity.117

The paper is organized as follows: Sec. II is devoted to the118

basic definitions, symmetries, and numerical method related119

to the inviscid Taylor-Green vortex. In Sec. III, the new high-120

resolution Taylor-Green results are presented and are analyzed121

classically in terms of analyticity-strip method and BKM. In122

Sec. IV, the analyticity-strip method and BKM theorem are123

bridged together. The section starts with heuristic arguments124

that are next formalized in a mathematical framework of125

definitions, hypotheses, and theorems. In Sec. V, our new126

theoretical results are used to analyze the behavior of the127

decrement. Section VI is our conclusion.128

The generalization to non-TG-symmetric periodic flows of129

the results presented in Sec. IV is described in the Appendix.130

II. DEFINITION OF THE SYSTEM131

A. Basic definitions132

Let us consider the 3D incompressible Euler equations for133

the velocity field u(x,y,z,t) ∈ R
3 defined for (x,y,z) ∈ R

3 and134

1This new behavior of the Euler TG vortex is somewhat similar to
the acceleration in the decrease of δ that was reported in magnetohy-
drodynamics for the so-called IMTG initial data at resolution 20483

in [19].

in a time interval t ∈ [0,T ): 135

∂u
∂t

+ u · ∇u = −∇p, ∇ · u = 0. (1)

136

The Taylor-Green (TG) flow [15] is defined by the 2π - 137

periodic initial data u(x,y,z,0) = uTG(x,y,z), where 138

uTG = (sin(x) cos(y) cos(z), − cos(x) sin(y) cos(z),0).

The periodicity of u allows us to define the (standard) 139

Fourier representation: 140

û(k,t) = 1

(2π )3

∫
D

u(x,t) exp(−ikx)d3x, (2)

u(x,t) =
∑
k∈Z3

û(k,t) exp(ikx), (3)

The kinetic-energy spectrum E(k,t) is defined as the sum 141

over spherical shells, 142

E(k,t) = 1

2

∑
k∈Z3

k−1/2<|k|<k+1/2

|̂u(k,t)|2, (4)

and the total energy, 143

E = 1

2(2π )3

∫
D

|u(x,t)|2d3x = 1

2

∑
k∈Z3

|̂u(k,t)|2,

is independent of time because u satisfies the 3D Euler 144

equations (1). 145

B. Symmetries 146

A number of the symmetries of uTG are compatible with 147

the equation of motions. They are, first, rotational symmetries 148

of angle π around the axis (x = z = π/2) and (x = z = π/2) 149

and of angle π/2 around the axis (x = y = π/2). A second 150

set of symmetries corresponds to planes of mirror symmetry: 151

x = 0,π , y = 0,π , and z = 0,π . On the symmetry planes, the 152

velocity uTG and the vorticity ωTG = ∇ × uTG are, respec- 153

tively, parallel and perpendicular to these planes that form the 154

sides of the so-called impermeable box which confines the 155

flow. 156

It is demonstrated in [16] that these symmetries imply 157

that the Fourier expansion coefficients of the velocity field 158

in Eq. (3) û(m,n,p,t) vanish unless m,n,p are either all even 159

or all odd integers. This fact can be used in a standard way [16] 160

to reduce memory storage and speed up computations. 161

C. Numerical method 162

The Euler equations (1) are solved numerically using 163

standard [12] pseudospectral methods with resolution N . Time 164

marching is done with a second-order Runge-Kutta finite- 165

difference scheme. The solutions are dealiased by suppressing, 166

at each time step, the modes for which at least one wave-vector 167

component exceeds two-thirds of the maximum wave number 168

N/2 (thus a 40963 run is truncated at k > kmax ≡ 1365). 169

The simulations reported in this paper were performed 170

using a special purpose symmetric parallel code developed 171

from that described in [19,20]. The workload for a time step 172

is (roughly) twice that of a general periodic code running at a 173

quarter of the resolution. Specifically, at a given computational 174
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cost, the ratio of the largest to the smallest scale available175

to a computation with enforced Taylor-Green symmetries is176

enhanced by a factor of 4 in linear resolution. This leads177

to a factor of 32 savings in total computational time and178

memory usage. The code is based on FFTW and a hybrid179

message passing interface (MPI) OPENMP scheme derived180

from that described in [21]. The runs were performed on the181

Institut du Développement et des Ressources en Informatique182

Scientifique BlueGene/P machine. At resolution 40963 we183

used 512 MPI processes, each process spawning four OPENMP184

threads.185

III. NUMERICAL RESULTS AND CLASSICAL ANALYSIS186

A. Energy spectra, maximum vorticity,187

and collision of vortex sheets188

Runs were performed at resolutions 5123, 10243, 20483,189

and 40963.190

The behavior of the energy spectra in Eq. (4) and the191

spatial maximum of the norm of the vorticity ω = ∇ × u are192

presented in Fig. 1.193

It is apparent in Fig. 1(a) that resolution-dependent even-194

odd oscillations are present, at certain times, on the TG energy195

spectrum. Note that this behavior is produced when the tail196

of the spectrum rises above the round-off error ∼10−32. This197

phenomenon can be explained in terms of a resonance [22],198

FIG. 1. (Color online) Temporal evolution of TG flow. (a) Energy
spectra E(k,t) [see Eq. (4)] at t = (1.3,1.9,2.5,2.9,3.4,4.0). The
lowest curve corresponds to t = 1.3 and the highest corresponds
to t = 4.0. (b) Maximum of vorticity ‖ω(·,t)‖∞. Results from runs
performed at different resolutions are displayed together: 5123 (brown
triangles), 10243 (blue squares), 20483 (green diamonds), and 40963

(red circles).

(a) (b)

(c) (d)

FIG. 2. (Color online) 3D visualization of TG vorticity |∇ × u| at
resolution 40963. (a) Full impermeable box 0 � x � π , 0 � y � π ,
and 0 � z � π at t = 3.75. Zooms over the sub-box marked near
x = y = π , z = π/2 are displayed at (b) t = 3.5, (c) t = 3.75, and
(d) t = 4.0.

along the lines developed in [23]. In practice we will deal with 199

this problem by averaging the spectrum over shells of width 200

�k = 2. Apart from this it can be seen that spectra computed 201

using different resolutions are in good agreement for all times. 202

In contrast, it is visible in Fig. 1(b) that the maximums of 203

vorticity ‖ω(·,t)‖∞ computed at different resolutions are in 204

agreement only up to some resolution-dependent time (see the 205

inset). The fact that ‖ω(·,t)‖∞ at a given time t > 3.7 decreases 206

if one truncates the higher wave numbers of the velocity field 207

[see Fig. 1(b)] strongly suggests that ‖ω(·,t)‖∞ has significant 208

contributions coming from high-wave-number modes. This 209

forms the basis of the heuristic argument presented below in 210

Sec. IV A. 211

Figure 2 shows 3D visualizations (using the VAPOR2
212

software) of the high vorticity regions in the impermeable 213

box, corresponding to the 40963 run at late times. A thin vortex 214

sheet is apparent in Fig. 2(a) on the vertical faces x = 0, π and 215

y = 0, π of the impermeable box. 216

The emergence of this thin vortex sheet is well understood 217

by simple dynamical arguments about the flow on the faces 218

of the impermeable box that were first given in [16]. We now 219

briefly review these arguments. The initial vortex on the bottom 220

face is forced by centrifugal action to spiral first outwards 221

toward the edges and then up the side faces. A corresponding 222

outflow on the top face and downflow from the top edges 223

onto the side faces lead to a convergence of fluid near the 224

horizontal centerline of each side face, from where it is forced 225

2See http://www.vapor.ucar.edu.
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back into the center of the box and subsequently back to the top226

and bottom faces. The vorticity on the side faces is efficiently227

produced in the zone of convergence and builds up rapidly into228

a vortex sheet (see Figs. 1 and 2 of [16] and Fig. 8 of [17]).229

While these considerations explain the presence of the thin230

vortex sheet in Fig. 2(a), the dynamics presented in Figs. 2(b)–231

2(d) also involves the collision of vortex sheets happening232

near the edge x = y = π , close to z = π/2. Note that, as233

stated above in Sec. II B, the vortex lines are perpendicular to234

the faces of the impermeable box. Thus, because the collision235

takes place near an edge, the corresponding vortex lines must236

be highly curved, with strong variations of the direction of237

vorticity. The geometric constraints on potential singularities238

posed by the evolution of the direction of vorticity developed239

in [7–9] could be applied to the situation described in Fig. 2.240

However, such an analysis goes beyond the BKM theorem241

and involves extensive postprocessing of very large datasets.242

This task is thus left for further work, and we concentrate here243

on simple BKM diagnostics for the vorticity supremum and244

analyticity-strip analysis of energy spectra.245

B. Analyticity-strip analysis of energy spectra246

The analyticity-strip method [10] is based on the fact that247

when the velocity field is analytic in space the energy spec-248

trum satisfies E(k,t) ∝ e−2 k δ(t) in the asymptotic “ultraviolet249

region” k � 1, with a proportionality factor that may contain250

an algebraic decay in k, a multiplicative function of time, and,251

depending on the complexity of the physical flow, even an252

oscillatory (in k) modulation [18].253

The basic idea is thus to assume that E(k,t) can be well254

approximated by a function of the form255

E(k,t) ≈ C(t) k−n(t) e−2 k δ(t)

in some wave-number interval between 1 and kmax = N/3�256

(the maximum wave number permitted by the numerical reso-257

lution N ). The common procedure to determine C(t),n(t),δ(t)258

is to perform a least-square fit at each time t on the logarithm259

of the energy spectrum E(k,t), using the functional form260

ln E(k,t) = ln C(t) − n(t) ln k − 2k δ(t). (5)

The error on the fit interval k1 � k � k2,261

χ2(t) =
k2∑

k=k1

[ln E(k,t) − ln C(t) + n(t) ln k + 2k δ(t)]2,

is minimized by solving the equations ∂χ2/∂C = 0,262

∂χ2/∂n = 0, and ∂χ2/∂δ = 0. Note that these equations are263

linear in the parameters ln C(t), n(t), and δ(t).264

The transient oscillations of the energy spectrum observed265

at the highest wave numbers [see Fig. 1(a)] are eliminated by266

averaging the TG spectrum on shells of width �k = 2 before267

performing the fit [16].268

We present in Fig. 3 examples of TG energy spectra fitted269

in such a way on the intervals 2 < k < min(k∗,kmax), where270

k∗ = infE(k)<10−32 (k) denotes the beginning of round-off noise.271

It is apparent that the fits are globally of a good quality.272

The time evolutions of the fit parameters C, δ, and n273

computed at different resolutions are displayed in Fig. 4.274

The measure of the fit parameters is reliable as long as δ(t)275

FIG. 3. (Color online) Comparison of fit in Eq. (5) (solid black
line) and spectrum at resolution 40963 (red markers); times and fit
intervals are indicated in the legend.

remains larger than a few mesh sizes, a condition required 276

for the smallest scales to be accurately resolved and spectral 277

convergence ensured. Thus the dimensionless quantity δkmax 278

is a measure of spectral convergence. 279

It is conventional [16] to define a “reliability time” Trel by 280

the condition 281

δ(Trel)kmax = 2 (6)

and to say that the numerical simulation is reliable for times t � 282

Trel. This reliability time can be extended only by increasing 283

the spatial resolution available for the simulation, so the more 284

computer power is available the larger is the reliability time. 285

The resolution-dependent reliability condition Eq. (6) is 286

marked by the horizontal lines in Fig. 4(c). The exponential 287

law 288

δ(t) ∼ 2.70 e−t/0.56, (7)

that was previously reported at resolution 20483 in [18], is 289

also indicated in Fig. 4(c) by a dashed black line. It is thus 290

apparent that our lower-resolution results well reproduce the 291

previous computations that were discussed above in Sec. I (see 292

text preceding citation of [16–18]). 293

In Table I, the reliability time Eq. (6) obtained from the 294

fit parameter δ of Fig. 4 is compared with the reliability time 295

stemming from the exponential behavior Eq. (7). It is apparent 296

by inspection of the table that the reliability time of our new 297

TABLE I. Reliability time in Eq. (6) deduced from the exponential
behavior in Eq. (7) compared with the reliability time obtained from
the fit parameter δ of Fig. 4.

Resolution Trel (exponential law) Trel (fit)

5123 3.05 3.05
10243 3.43 3.44
20483 3.82 3.75
40963 4.21 3.85
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FIG. 4. (Color online) Time evolution of energy spectrum fit parameters [see Eq. (5) and Fig. 3]: (a) constant C, (b) prefactor n, (c) decrement
δ (horizontal lines, δkmax = 2; dashed black line, exponential law Eq. (7)], and (d) decay rate −d{ln[δ(t)]}/dt . Results corresponding to different
resolutions are displayed together: 5123 (brown triangles), 10243 (blue squares), 20483 (green diamonds), and 40963 (red circles).

40963 results is markedly smaller than that deduced from298

the exponential law Eq. (7); the latter wrongly predicts that299

simulations at this resolution should be reliable until t = 4.21.300

The departure from the exponential behavior is also visible in301

the inset in Fig. 4(c).302

In order to capture this change of behavior more quan-303

titatively the logarithmic decay rate −d ln(δ)/dt , computed304

using finite differences in time, is displayed in Fig. 4(d). A305

clear change in trend is apparent around t = 3.7, where the306

logarithmic decay rate abruptly changes from a value near 2307

to a value near 8. Note that this change of behavior happens308

at a time that is reliable at resolution 40963 [see insets in309

Figs. 4(c) and 4(d)]. Interestingly, this time is close to the310

reliability time of the 20483 simulation. Therefore, the new311

behavior of accelerated decay for times t > 3.7 can only312

be suggested by the 20483 data and is here demonstrated313

by our 40963-resolution data. This acceleration of the decay314

rate of δ(t) is important because if Eq. (7) could be safely315

extrapolated to later times then the Taylor-Green vortex would316

never develop a real singularity [13].317

Let us conclude this section by showing that the new318

behavior does not depend on the wave-number interval chosen319

to perform the fits.320

Indeed, by close inspection of the top curve in Fig. 3 one can321

see that a small amount of systematic errors is present at the322

lowest (k < 100) wave numbers for large times. Excluding the323

lowest wave numbers from the fits results in less errors (data324

not shown). In Table II, the results of fits performed on the325

subinterval 103 < k < kmax are compared with those on the326

full interval 3 < k < kmax that was used until now. It can be327

checked on the table that the departure from the exponential328

law is not dependent on the interval chosen to perform the 329

fit. The values of n are also in agreement with previously 330

published data [18]. 331

C. BKM analysis of vorticity maximum 332

In this section we look for eventual singular behavior 333

by focusing on the time dependence of the TG data for 334

the vorticity supremum ‖ω‖∞(t) that is displayed above in 335

Fig. 1(b). The BKM theorem [1] states that blowup (if it 336

takes place) requires the time integral of the supremum of 337

the vorticity to become infinite. Our analysis method, first 338

introduced in [5], looks at evidence of power-law behavior in 339

the numerical time series for ‖ω‖∞(t) to see if the computed 340

exponent is compatible with blowup of the time integral of 341

‖ω‖∞(t). We now proceed to briefly recall the method. 342

TABLE II. Time evolution of fit parameters n and δ [see Eq. (5)]
on full interval 3 < k < kmax (same as in Fig. 4) compared with fits
on subinterval 103 < k < kmax.

n n 103 × δ 103 × δ

Time 3 − kmax 103 − kmax 3 − kmax 103 − kmax

3.6 4.07 3.95 4.13 4.22
3.65 4.09 4.05 3.73 3.75
3.7 4.09 4.14 3.36 3.31
3.75 4.09 4.19 2.85 2.76
3.8 4.12 4.29 2.10 1.95
3.85 4.13 4.34 1.41 1.22
3.9 4.09 4.34 0.94 0.71
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Let f (t) be the quantity to be studied. In order to test if343

it might blow up or go to zero in a finite time, we produce,344

locally in time, fits of power-law behavior of the form345

f (t) ≈ c(T∗ − t)γ , (8)

and we study the “instantaneous” or running estimates for γ346

and T∗ as a function of time.347

The local fits are done as follows: we first produce the new348

function349

g(t) =
(

d ln f (t)

dt

)−1

= f (t)/f ′(t). (9)

If f (t) is of the form of Eq. (8) then our new function satisfies350

g(t) ≈ (T∗ − t)/γ. Therefore, a linear fit of g(t) will give T∗351

and γ . More explicitly, we have the local expressions352

γ (t) =
(

1 − f (t) f ′′(t)
f ′(t)2

)−1

(10)

and353

T∗(t) = t + f (t) f ′(t)
f (t) f ′′(t) − f ′(t)2 . (11)

The latter local expressions can be used with any suitable fit354

method of the data, not necessarily linear fits.355

In practice, as our time series are given on an equally spaced356

temporal grid, we proceed in the following straightforward357

manner. First we compute ln[f (t)], then we use centered358

finite differences to estimate its derivative. Inverting this data359

furnishes estimates of g(t) at the midpoints. Using again360

centered finite differences produces estimates of 1/γ on the361

original grid, thus allowing the determination of local estimates362

for both T∗ and γ . Note that this algorithm basically amounts363

to a local three-point nonlinear fit.364

The values of g(t), T∗(t), and γ (t) obtained in this way from365

the TG data for the vorticity supremum ‖ω‖∞ are displayed366

in Fig. 5. It is apparent that g(t) presents an inflection point367

around t = 3.3 corresponding to a maximum value of γ that is368

above −1. Thus local in time power-law extrapolations around369

FIG. 5. (Color online) Time evolution of (a) inverse logarithmic
derivative Eq. (9) at all resolutions (see legend), (b) extrapolated
T∗ (11) (solid black line: T∗ = t), and (c) running value of γ Eq. (10),
both T∗ and γ are shown only at resolution 40963 (red circles).

TABLE III. Power-law fit parameters γ and T∗ [see Eq. (8)]
for the vorticity supremum ‖ω‖∞ determined at resolution 40963

[see Figs. 5(b) and 5(c)].

Time γ T∗

3.7 −1.42 4.09
3.75 −2.06 4.26
3.8 −1.04 4.02

t = 3.3 are inconsistent with the BKM theorem that requires 370

γ � −1. However, when t is larger than 3.6, the value of γ 371

goes below −1 and thus becomes compatible with BKM. 372

On the other hand, there is no sign that the data values of 373

γ and T∗ are settling down into constants, corresponding to a 374

simple power-law behavior. 375

Recall (see Sec. III B) that the last reliable value of ‖ω‖∞ 376

at resolution 40963 is at t = 3.85. Thus, due to our three-point 377

extrapolation method, the last reliable data point is at t = 3.825 378

in Fig. 5(a) and at t = 3.8 in Figs. 5(b) and 5(c). The data 379

corresponding to γ and T∗ are also displayed in Table III. 380

Thus, our conclusion for this section is that although 381

our late-time reliable data for ‖ω‖∞(t) show γ (t) < −1 and 382

are therefore not inconsistent with BKM, clear power-law 383

behavior of ‖ω‖∞(t) is not achieved. 384

IV. BRIDGING ANALYTICITY-STRIP METHOD 385

AND BKM THEOREM 386

A. Motivation and simple estimates 387

The vorticity maximum ‖ω(·,t)‖∞ was found to decrease 388

when the resolution is reduced at any given time t > 3.7 [see 389

the above discussion following Fig. 1(b)]. This strongly sug- 390

gests that, in this late-time regime, ‖ω(·,t)‖∞ has significant 391

contributions coming from high-wave-number modes. In this 392

context, the following short heuristic argument is provided as 393

a motivation for the more rigorous mathematical results to 394

follow. 395

Consider the well-known Sobolev inequality, which can be 396

derived using the same hypotheses as in Lemma 7 below: 397

‖ω(·,t)‖∞ � Cε

√
2 
ε+5/2(t), ∀ t ∈ [0,T ). (12)

This bound is valid for any ε > 0, where 398

Cε ≡
√ ∑

k∈Z
3
odd∪Z3

even\{0}
|k|−3−2 ε, (13)

and 
p is defined by 399


p(t) ≡ 1

2

∑
k∈Z

3
odd∪Z3

even

|k|2p |̂u(k,t)|2. (14)

Notice that 2
p is the square of the Sobolev seminorm 400

|u(·,t)|Hp . 401

Motivated by the numerical results of Sec. III B, let us 402

assume, at a given time t , a behavior of the energy spectrum 403

in Eq. (4) of the type 404

E(k) ∼ k−ne−2δk. (15)
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Notice that n and δ are functions of time. When n < 6 and δ405

tends to zero, this gives a UV divergence:406


ε+5/2 ∼
∫ ∞

1
k5+2ε−ne−2δkdk ∼ δ−6+n−2ε .

Plugging this into the bound Eq. (12), and using the BKM407

theorem, we get
∫ T∗ δ(t)−3+ n

2 −εdt = ∞, where T∗ is the408

hypothetical singularity time.409

At this point, again motivated by our numerical results, we410

assume n = const < 6 and assume a power-law behavior for411

the analyticity-strip width of the form412

δ(t) ∝ (T∗ − t)�,

where � > 0 is a constant. Replacing this into the above413

integral we conclude that414 ∫ T∗
(T∗ − t)(−3+ n

2 −ε)�dt = ∞,

i.e., a finite-time singularity can be attained only if the415

exponents satisfy (−3 + n
2 − ε)� � −1 for any ε > 0 . Taking416

the limit ε → 0 we deduce finally417

� � 2

6 − n
.

In words, “if the analyticity-strip width δ(t) goes to zero as a418

power law, then the exponent must be greater than or equal to419

2
6−n

.”420

The main difficulty to overcome in order to materialize421

the above heuristic arguments into a firm basis is that the422

common Sobolev bound Eq. (12) has a problem at ε = 0:423

the constant Cε is equal to infinity there, so taking the limit424

as we did is not fully justified. We provide the solution to425

this problem by finding a new rigorous bound, sharper than426

the common Sobolev bound, which gives the same optimal427

exponents without a divergent constant.428

The second difficulty is that the assumed behavior for the429

energy spectrum in Eq. (15), commonly used in the analyticity-430

strip method, is a very strong condition and does not hold431

uniformly for k ∈ N. In fact, the evidence in analytically432

solvable models such as the one-dimensional (1D) Burgers433

equation is that the behavior Eq. (15) holds with some434

exponents n and δ in the region k � δ−1, (large-k asymptotic435

limit), and the behavior E(k,t) ∼ k−ñ holds in the region436

1 � k � δ−1, with ñ < n. We provide the solution to this lack437

of uniformity by introducing a “working hypothesis” which is438

a uniform-in-k inequality for the energy spectrum, that still439

retains the spirit of the analyticity-strip method. The working440

hypothesis is verified for the case of the 1D Burgers equation441

(see the discussion at the end of Sec. VI).442

B. Mathematical preliminaries443

1. BKM theorem444

We assume the usual hypotheses of the Beale-Kato-445

Majda (BKM) theorem. Let T denote, from here on, a446

generic time so that the velocity field u ∈ C([0,T ); Hp) ∩447

C1([0,T ); Hp−1) , p � 3, so in particular the quantities de-448

fined in Eq. (14) are bounded for p � 3:449


p(t) � cp, ∀ t ∈ [0,T ).

The BKM theorem [1] states that the assumed regularity of the 450

velocity field can be extended up to and including the time T 451

if and only if τ (T ) ≡ ∫ T

0 ‖ω(·,t)‖∞dt < ∞. By “regular up 452

to and including the time T ” we mean u ∈ C([0,T ]; Hp) ∩ 453

C1([0,T ]; Hp−1), p � 3. 454

Definition 1. We define the maximal time of regularity 455

T∗ ∈ (0,∞] as the earliest time for which u ceases to be in 456

C([0,T ]; Hp) ∩ C1([0,T ]; Hp−1) , p � 3. 457

If T∗ < ∞ we speak of a finite-time singularity. 458

With this definition, we conclude that the time integral 459

appearing in the BKM theorem converges for all T < T∗ and 460

diverges at T = T∗:
∫ T∗

0 ‖ω(·,t)‖∞dt = ∞ . 461

2. Working hypothesis for energy spectrum 462

An implicit assumption of the analyticity-strip method 463

is the existence of the Fourier components of the solution 464

of the 3D Euler equations. Taylor-Green (TG) symmetries 465

imply that only modes with even-even-even and odd-odd-odd 466

wave-number components are present (see Sec. II B). The 467

appropriate definition of the energy spectrum is thus the 468

following: 469

Definition 2. The kinetic-energy spectrum E(k,t) is defined 470

as the sum of the squares of the modulus of Fourier coefficients 471

over spherical shells: 472

E(k,t) = 1

2

∑
k∈Z

3
odd∪Z

3
even

k−1/2<|k|<k+1/2

|̂u(k,t)|2. (16)

473

It is easy to check that the TG symmetries imply that 474

E(0,t) = E(1,t) = 0 ∀t ∈ [0,T∗). Numerical observations 475

(see [18] and Sec. III above) lead us to formulate the following 476

working hypothesis that will be used to bound the energy 477

spectra: 478

Hypothesis 3. From here on, we will assume that there 479

exist a constant M > 0 and positive functions n0(t),δ0(t), 480

continuous on [0,T∗), such that for all times t ∈ [0,T∗) and 481

all k ∈ Z,k � 2 we have 482

E(k,t) � M k−n0(t) e−2 k δ0(t). (17)

483

Remarks. 484

(i) The working hypothesis is consistent with the hypothe- 485

ses of the BKM theorem. 486

(ii) The working hypothesis is an inequality defined 487

globally in k and is not a large-k asymptotic expansion. 488

Furthermore, a large-k asymptotic expansion is typically of 489

the form E(k,t) = C1(t)k−n1(t) e−2 k δ1(t) and has, in contrast 490

to Eq. (17), a time-dependent constant C1(t). Nevertheless, 491

asymptotic results can be used to establish the working 492

hypothesis in special cases such as the 1D inviscid Burgers 493

equation (see the discussion below, at the end of Sec. VI). 494

(iii) The numerically obtained fits of the analyticity-strip 495

method E(k,t) ≈ C(t)k−n(t) e−2kδ(t) are similarly related to the 496

working hypothesis. Notice that these fits are obtained over a 497

finite range of values of wave number k, so they give only 498

partial information. At early times, when the analyticity-strip 499

width δ is big so that δk � 1, one is in the “large-k asymptotic 500

limit.” At late times, when δ becomes of the order of the highest 501

resolved wave number kmax, we have δk � 1 and thus the 502
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fits represent the “small-k range.” The relations n(t) � n0(t)503

and δ(t) � δ0(t) are required for consistency with the working504

hypothesis. In practice, we will use the numerically obtained505

n(t) and δ(t) to estimate n0(t) and δ0(t).506

3. Classification of solutions in terms of regularity507

We see from Definition 1 that a finite-time singularity is508

defined by the condition T∗ < ∞. Combining this with the509

working hypothesis, a finite-time singularity can occur only510

if limt→T∗ δ0(t) = 0. Among all possible continuous positive511

functions δ0(t) that tend to zero as t → T∗ we will consider, to512

simplify the analysis, only the power-law type of functions.513

Definition 4. A solution of the 3D Euler equations satisfying514

the working hypothesis Eq. (17) is said to have a finite-time515

singularity of power-law type, with power � > 0, if the516

working hypothesis admits a function δ0(t) that behaves, near517

t = T∗, as518

δ0(t) ∝ (T∗ − t)�.

We saw in the heuristics Sec. IV A that if the energy519

spectrum is of the form E(k,t) ≈ C(t)k−n(t) e−2kδ(t) then the520

exponent n(t) must be less than 6 in order for a finite-time521

singularity to occur. This result will be fully formalized in522

Sec. IV C, but first we need to define two types of solutions in523

terms of the behavior of the exponent n0(t) appearing in the524

working hypothesis.525

Definition 5. A solution of the 3D Euler equations satisfying526

the working hypothesis Eq. (17) is said to be of strong527

regularity if the working hypothesis admits an exponent528

n0(t) such that lim inft→T∗ n0(t) > 6. Otherwise, i.e., if all529

the exponents admitted by the working hypothesis satisfy530

lim inft→T∗ n0(t) � 6, the solution is said to be of mild531

regularity.532

The reason for the name “strong” is due to the following533

lemma (to be proved in Sec. IV C):534

Lemma 6. Let a solution of the 3D Euler equations satisfying535

the working hypothesis Eq. (17) be of strong regularity. Then536

the solution has no finite-time singularity.537

This lemma’s assertion is basically the same as the well-538

known fact that there cannot be a finite-time loss of analytic539

regularity without loss of C1 regularity [11,24].540

This result can be used as a validation test for numerical541

simulations of 3D Euler fluids. If the supremum norm of the542

vorticity is to grow in time without bound, then the exponent543

n0(t) must be well below the critical value 6. Fortunately,544

all reliable numerical simulations that we know of pass this545

elementary test.546

C. Main results linking Beale-Kato-Majda theorem547

and analyticity-strip method548

1. Sharp bound for vorticity549

Lemma 7. Let u(x,t) be a velocity field satisfying the550

Taylor-Green symmetries and with energy spectrum defined551

by Eq. (16). Let ω = ∇ × u be its vorticity, defined on552

the periodicity domain D = [0,2 π ]3. Then the following553

inequality is verified for all times t ∈ [0,T ): 554

‖ω(·,t)‖∞ �
∞∑

k=2

√
2 k(k + 1) E(k,t) Sk, (18)

where Sk ≡ #{k ∈ Z
3
odd ∪ Z

3
even : k − 1/2 < |k| < k + 1/2} is 555

the combined number of lattice points (of the form odd-odd- 556

odd or even-even-even) in a spherical shell of width 1 and 557

radius k ∈ Z+. 558

Proof. The vorticity field is defined in terms of its Fourier 559

components by ω(x,t) = ∑
k∈Z

3
odd∪Z3

even
eik·xω̂(k,t). Therefore, 560

|ω(x,t)| �
∑

k∈Z
3
odd∪Z3

even

|ω̂(k,t)|, (19)

for all x ∈ D. The left-hand side of this equation can be 561

replaced by the supremum norm. Also, we use the identity 562

|ω̂(k,t)| = |k||̂u(k,t)| on the right-hand side and obtain 563

‖ω(·,t)‖∞ �
∑

k∈Z
3
odd∪Z3

even

|k||̂u(k,t)|.

Assuming that u is regular so the above sum over the lattice 564

converges, we can rewrite the sum over spherical shells of 565

width 1 and radius k ∈ Z+. We get 566

‖ω(·,t)‖∞ �
∞∑

k=2

⎛⎜⎜⎝ ∑
k∈Z

3
odd∪Z

3
even

k−1/2<|k|<k+1/2

|k||̂u(k,t)|

⎞⎟⎟⎠.

We proceed to bound the terms in brackets, for a given k ∈ Z+. 567

First, notice that the highest possible value of |k| is equal to 568√
k(k + 1). We obtain the preliminary result 569

‖ω(·,t)‖∞ �
∞∑

k=2

√
k(k + 1)

⎛⎜⎜⎝ ∑
k∈Z

3
odd∪Z

3
even

k−1/2<|k|<k+1/2

|̂u(k,t)|

⎞⎟⎟⎠.

Second, the remaining sum in brackets is related to the energy 570

spectrum E(k,t), Eq. (4), by virtue of the Cauchy-Schwartz 571

inequality. We have 572∑
k∈Z

3
odd∪Z

3
even

k−1/2<|k|<k+1/2

|̂u(k,t)| �
√

2 E(k,t)
√√√√ ∑

k∈Z
3
odd∪Z

3
even

k−1/2<|k|<k+1/2

1, (20)

which establishes the lemma. � 573

Remarks. The proof is independent of any evolution 574

equation that u might satisfy. Only two inequalities have been 575

used to get the bound Eq. (18), and these inequalities are quite 576

sharp: 577

First, the bound Eq. (19) is saturated when all phases are 578

equal in the Fourier expansion for the vorticity field at the 579

position of the vorticity maximum. This saturation indeed takes 580

place in one-dimensional systems that blow up in a finite time, 581

such as the inviscid Burgers equation (work in progress). 582

Second, the bound Eq. (20) is saturated when all the terms 583

are equal in the sum over the spherical shell of fixed radius 584

k. Physically, such saturation should be observed in a fully 585

isotropic scenario, i.e., when the terms |̂u(k,t)|2 depend more 586

on the wave vector’s modulus |k| than on its direction k/|k|. 587
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In contrast, the Sobolev bound Eq. (12) would be saturated588

only for unphysical scenarios where the energy spectrum589

E(k,t) has a compact support in k space and is independent of590

the wave number k on that support. Thus the Sobolev bound591

Eq. (12) will be less sharp than the new bound Eq. (18) for any592

realistic energy spectrum that decays as k → ∞.593

Practical form. We provide a more practical form of the594

sharp bound Eq. (18), by noticing that Sk ≈ πk2 as k → ∞.595

Under the hypotheses of Lemma 7, we readily obtain the596

estimate597

‖ω(·,t)‖∞ � c

∞∑
k=2

k2
√

E(k,t), (21)

where c = 2
√

11/3. This constant was computed by direct598

inspection of the maximum deviation from the asymptotic599

formula Sk ≈ πk2. Although this estimate seems not as sharp600

as the original one, it will be enough for the practical situation601

where the analyticity-strip width δ(t) tends to zero and the602

main contribution comes from the “ultraviolet region” k � 1.603

2. Implications of BKM theorem: general result604

Let us replace the working hypothesis for the energy605

spectrum Eq. (17) into the bound Eq. (21). The sum over606

k � 2 can be written in terms of the so-called polylogarithm607

function. We obtain the bound608

‖ω(·,t)‖∞ � c
√

M L̃i

(
n0(t)

2
− 2,e−δ0(t)

)
, (22)

where L̃i(s,z) is defined by609

L̃i(s,z) ≡
∞∑

k=2

k−szk = Li(s,z) − z,

and Li(s,z) is the Jonquière’s function (or polylogarithm):610

Li(s,z) ≡ ∑∞
k=1 k−szk .611

Combining the bound Eq. (22) with the BKM theorem we612

obtain the following:613

Theorem 8. Let a solution of the 3D Euler equations satisfy614

the Taylor-Green symmetries and the working hypothesis615

Eq. (17). Then its maximal regularity time T∗ must satisfy616

617 ∫ T∗

0
L̃i

(
n0(t)

2
− 2,e−δ0(t)

)
dt = ∞. (23)

618

Proof. The proof is a direct application of the BKM theorem619

to inequality Eq. (22). �620

At this point it is necessary to state without proof some621

properties of the polylogarithm:622

Lemma 9. The polylogarithm function Li(p,z) satisfies the623

following properties:624

(i) Let 0 < z < 1 and let p,q be two non-negative numbers.625

Then we have Li(p,z) � Li(q,z) ⇐⇒ p � q .626

(ii) Let |μ| < 2π and let r ∈ R \ Z+. Then627

Li(r,eμ) ≈ �(1 − r) (−μ)r−1 +
∞∑

k=0

ζ (r − k)

k!
μk,

where ζ is the Riemann zeta function.628

(iii) Let |μ| < 2π and let s ∈ Z+. Then 629

Li(s,eμ) ≈ μs−1

(s − 1)!
[Hs−1 − ln(−μ)] +

∞∑
k=0

k �=s−1

ζ (s − k)

k!
μk,

where Hp = ∑p

h=1
1
h

is the pth harmonic number, with 630

H0 = 0. 631

We are now ready to prove the following: 632

Lemma 6. Let a solution of the 3D Euler equations satisfying 633

the working hypothesis Eq. (17) be of strong regularity. Then 634

the solution has no finite-time singularity. 635

Proof. By definition, solutions of strong regularity sat- 636

isfy the working hypothesis with lim inft→T∗ n0(t) > 6. 637

Therefore, using Lemma 9 (i) on Eq. (23), we obtain 638∫ T∗ L̃i(1 + ε,e−δ0(t)) dt = ∞ , for some ε ∈ (0,1). Now, using 639

Lemma 9 (ii) with r > 1, we obtain that the integrand is 640

continuous in time. Therefore T∗ = ∞. � 641

3. Implications of BKM theorem: singularity scenarios 642

Theorem 8 represents our “bridge” from the analyticity- 643

strip method to the BKM theorem: a singularity of the solution 644

at time T∗ can be attained only if the parameters n0(t) and δ0(t) 645

satisfy Eq. (23). 646

Recall that for a singularity to occur the function δ0(t) must 647

tend to zero as t → T∗. The polylogarithm L̃i( n0(t)
2 − 2,e−δ0(t)) 648

has a branch point at n0(t) = 6,δ0(t) = 0 [see Lemma 9 (iii)], 649

so the asymptotic behavior of the integrand Eq. (23) as δ0(t) → 650

0 depends sensitively on the behavior of the function n0(t) near 651

the “critical” value 6. To avoid this branch point, we introduced 652

solutions with strong and mild regularity in Definition 5. 653

The two following main results exploit the consequences 654

of Theorem 8 in singularity scenarios. They provide us with 655

a criterion on how fast δ0(t) must decay to zero in order to 656

sustain a singularity. 657

Corollary 10. Let a solution of the 3D Euler equations 658

satisfy the Taylor-Green symmetries and the working hy- 659

pothesis Eq. (17). Let the solution be of mild regularity, i.e., 660

lim inft→T∗ n0(t) � 6, where T∗ is the maximal regularity time. 661

Let limt→T∗ δ0(t) = 0. Then, T∗ satisfies 662∫ T∗ (
1

δ0(t)

) 6−n−
2

dt = ∞,

for all n− in (−∞,lim inft→T∗ n0(t)] ∩ (−∞,6). 663

Proof. Let n− be in (−∞,lim inft→T∗ n0(t)] ∩ (−∞,6). 664

From n− � lim inft→T∗ n0(t), using Lemma 9 (i) on Eq. (23) 665

we obtain 666∫ T∗
L̃i

(
n−
2

− 2,e−δ0(t)

)
dt = ∞.

Now, since n− < 6 and the function δ0(t) tends to zero as 667

t → T∗, we can use Lemma 9 (ii) to bound the integrand 668

L̃i( n−
2 − 2,e−δ0(t)) by a constant times ( 1

δ0(t) )
6−n−

2 , which com- 669

pletes the proof. 670

Finally we consider the hypothetical situation of a 671

finite-time singularity of power-law type, as described in 672

Definition 4: δ0(t) ∝ (T∗ − t)� , with T∗ < ∞. 673

Corollary 11. Under the hypotheses of Corollary 10, the 674

solution of the 3D Euler equations has a finite-time singularity 675
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at time T∗ < ∞, of power-law type with exponent �, only if676

� � 2

6 − n−
,

for all n− in (−∞,lim inft→T∗ n0(t)] ∩ (−∞,6).677

Proof. The proof follows directly from Corollary 10. �678

V. ANALYSIS OF ANALYTICITY-STRIP WIDTH679

IN TERMS OF BKM THEOREM680

A. Quality of bounds681

Several bounds were used in Sec. IV. We now proceed to682

test their sharpness, when they are applied to the numerical data683

of Sec. III. Figure 6 shows a comparison of the new inequality684

Eq. (18) and the old inequality Eq. (12) taking ε = 0.1 with685

Cε = 3.9. Note that the value of Cε [see Eq. (13)] can be686

estimated by the integral
√∫ ∞√

3 πk2k−3−2εdk = √
π3−ε/2ε,687

yielding Cε ∼ 3.75 at ε = .1. A more careful computation of688

the discrete sum gives Cε � 3.9, the value used to generate689

Fig. 6.690

The data in Fig. 6(a) display two important facts:691

(i) The new bound is sharper than the old bound throughout692

the computation, particularly at the reliable end of the693

simulation, t � 3.7, when the three curves show a change694

of trend and the old bound diverges at a faster rate than the695

new bound [see also Fig. 6(b)].696

(ii) Both old and new bounds are not too bad at the697

beginning of the computation (t = 0), with an initial ratio698

of 5:2 between the new bound and the vorticity supremum699

norm. Subsequently, the bounds become increasingly less700

sharp, and the new bound attains a ratio 165:1 with the701

vorticity supremum norm at t = 4. However, the slope of702
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FIG. 6. (Color online) Comparison of the bounds for the Taylor-
Green flow at resolution 40963. (a) Lin-log plot: “old bound” is
the right-hand side of the inequality Eq. (12), taking ε = 0.1 and
Cε = 3.9 (see text), and “new bound” is the right-hand side of the
sharp inequality Eq. (18). (b) Interpolated time derivative of the
logarithms of (a), for a time range localized near the change of trend,
with the same parameters as in (a).

FIG. 7. (Color online) Temporal evolution of the inverse loga-
rithmic derivative Eq. (9) computed from the same values of δ as in
Fig. 4(d); 5123 (brown triangles), 10243 (blue squares), 20483 (green
diamonds), and 40963 (red circles).

the new bound’s curve is comparable to the slope of the 703

vorticity-supremum-norm curve. 704

In order to make a more quantitative comparison of the 705

slopes, Fig. 6(b) shows the logarithmic rates of growth for 706

old bound, new bound, and vorticity supremum norm. In that 707

order, these rates satisfy the ratios 7 : 5 : 4 at the resolved time 708

t ≈ 3.85. 709

B. Analysis of δ in terms of BKM 710

We now proceed to see if the accelerated decay observed in 711

the decrement δ(t) and quantified in Fig. 4(d) can correspond 712

to a power law. To wit, we use the same local three-point 713

method as that described in Sec. III C [see Eqs. (9)–(11)]. The 714

behavior of g(t) is presented in Fig. 7 and the corresponding 715

T∗(t) and �(t) are presented in Table IV. 716

The results for the exponent and predicted singular time of 717

Table IV have to be read carefully. Because of the local three- 718

point method used to derive them from the data in Table II, they 719

use the values of δ at t = 3.65,3.7,3.75,3.8,3.85, the last one 720

being marginally reliable (see Sec. III B). In fact, they amount 721

to a linear two-point extrapolation of the data in Fig. 7 (see the 722

inset): T∗ is the intersection of the straight line extrapolation 723

with the time axis and � is the inverse of the slope. One can 724

guess that there is room for a power-law type of behavior, with 725

exponent � ≈ 0.4 if we consider the data at t = 3.7,3.75 and 726

� ≈ 1.4 if we include the data at t = 3.8. 727

TABLE IV. Power-law fit parameters � and T∗ [see Eq. (8)] for
δ(t) determined at resolution 40963 on full interval 3 < k < kmax

(same as in Figs. 4 and 7) and on subinterval 103 < k < kmax

(see Table II).

� � T∗ T∗
Time 3 − kmax 103 − kmax 3 − kmax 103 − kmax

3.7 0.283 0.383 3.81 3.83
3.75 0.354 0.393 3.83 3.83
3.8 1.41 1.36 4.00 3.97
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We now use Corollary 11 (see Sec. IV) to test if these728

estimates of the power law are consistent with the hypothesis729

of finite-time singularity. There, the product �(6 − n−)/2 must730

be greater than or equal to 1 if finite-time singularity is to be731

expected. With the conservative estimate n− = 3.9 obtained732

by inspection of Fig. 4(b) (or equivalently using the values733

of n in Table II), we obtain that �(6 − n−)/2 < 1 for the734

data at t = 3.7 and 3.75, but �(6 − n−)/2 > 1 for the data735

at t = 3.8. These results are insensitive to the fit interval; see736

Table IV. Therefore, if the latest data are considered, Corollary737

11 cannot be used to negate the validity of the hypothesis of738

finite-time singularity. However, there is no sign that the data739

values of � and T∗ in Table IV are settling down into constants,740

corresponding to a simple power-law behavior.741

Another piece of analysis consists of comparing the singular742

time predicted from the data for the decrement δ(t) with the743

singular time predicted from the direct data for the vorticity744

supremum norm. They seem both to be close to T∗ ≈ 4745

(compare Tables IV and III).746

In this context, we should perhaps mention Feynman’s rule,747

“Never trust the data point furthest to the right,” a comment748

attributed to Richard Feynman, saying basically that he would749

never trust the last points on an experimental graph, because750

if the people taking data could have gone beyond that, they751

would have. Higher-resolution simulations are clearly needed752

to investigate whether the new regime is genuinely a power753

law and not simply a crossover to a faster exponential decay.754

Our conclusion for this section is thus similar to that of755

Sec. III C: although our late-time reliable data for δ(t) show756

�(6 − n−)/2 > 1 and are therefore not inconsistent with our757

Corollary 11, clear power-law behavior of δ(t) is not achieved.758

VI. CONCLUSIONS759

In summary, we presented simulations of the Taylor-Green760

vortex with resolutions up to 40963. We used the analyticity-761

strip method to analyze the energy spectrum. We found that,762

around t � 3.7, a (well-resolved up to t � 3.85) change of763

regime takes place, leading to a faster decay of the width of the764

analyticity strip δ(t). In the same time interval, preliminary 3D765

visualizations displayed a collision of vortex sheets. Applying766

the BKM criterion to the growth of the maximum of the767

vorticity on the time interval 3.7 < t < 3.85, we found that768

the occurrence of a singularity around t � 4 was not ruled out769

but that higher-resolution simulations were needed to confirm770

a clear power-law behavior for ‖ω‖∞(t).771

We introduced a new sharp bound for the supremum norm772

of the vorticity in terms of the energy spectrum. This bound773

allowed us to combine the BKM theorem with the analyticity-774

strip method and to show that a finite-time blowup can exist775

only if δ(t) vanishes sufficiently fast. Applying this new test to776

our highest-resolution numerical simulation we found that the777

behavior of δ(t) is not inconsistent with a singularity. However,778

due to the rather short time interval on which δ(t) is both779

well resolved and behaving as a power law, higher-resolution780

studies are needed to investigate whether the new regime is781

genuinely a power law and not simply a crossover to a faster782

exponential decay.783

Let us finally remark that our formal assumptions of784

Sec. IV C are motivated and to some extent justified by the785

fact that, in systems that are known to lead to finite-time 786

singularity, the equivalent of the working hypothesis Eq. (17) 787

is verified. For the analogy to apply, a version of the BKM 788

theorem must be available. This is the case of the 1D inviscid 789

Burgers equation for a real scalar field u(x,t) defined on the 790

torus: 791

∂u

∂t
+ u

∂u

∂x
= 0 ∀ x ∈ [0,2π ], ∀ t ∈ [0,T∗),

which admits a BKM type of theorem [25], with singularity 792

time T∗ defined by
∫ T∗ ‖ux(·,t)‖∞dt = ∞. 793

In the 1D case, the equivalent of our bound Eq. (21) is 794

‖ux(·,t)‖∞ � c̃

∞∑
k=1

k
√

E(k,t).

Using the simple trigonometric initial data u(x,0) = sin(x), 795

the energy spectrum can be expressed in terms of Bessel 796

functions that admit simple asymptotic expansions. It is 797

straightforward to show (see [10] for details) that, for 798

t < T∗ = 1, one has the large-k asymptotic expansion 799

E(k,t) ∼ 1

πt2
√

1 − t2
k−3e−2δS (t)k,

with 800

δS(t) = ln

(√
1 − t2 + 1

t

)
−

√
1 − t2,

while, at t = T∗ = 1, 801

E(k,1) ∼ 2 62/3

�
(− 1

3

)2 k−8/3.

In fact, the k−8/3 power law appears already before T∗ [see the 802

remark following Eqs. (3)–(10) of [10]]. 803

It is easy to check that the analytical solution admits, for all 804

k and for all t sufficiently close to T∗, a working hypothesis 805

Eq. (17) of the form 806

E(k,t) � M k−n0 exp(−2 δ0(t) k),

with analytically obtainable functions n0(t) = 8/3 and δ0(t) ∝ 807

(T∗ − t)� with � = 3/2. The equivalent of Corollary 11 gives 808

the inequality 809

� � 2

4 − n0
,

which is saturated by the analytically obtained exponents n0 = 810

8/3, � = 3/2. 811
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APPENDIX: EXTENSION TO GENERAL823

PERIODIC FLOWS824

Here we provide the generalization to non-TG-symmetric825

periodic flows of the results presented in Sec. IV C.826

Definition 2 and the working hypothesis (Hypothesis 3) are827

modified slightly in the general case. Accordingly, the new828

bounds leading to Lemma 7 and Theorem 8 need to be modified829

slightly to accommodate the general case. The crucial derived830

relations between δ0 and n0 in Lemma 6 and Corollaries 10831

and 11 will apply directly to the general periodic case and will832

not be discussed.833

The main technical difference is that the new bounds834

presented in Sec. IV C apply for a flow with TG symmetries835

(see Sec. II B) which imply that only modes with even-836

even-even and odd-odd-odd wave-number components are837

populated. The general periodic case does not follow this838

restriction, which slightly modifies the bounds. We will839

assume, to simplify matters, that the so-called zero mode of840

the velocity field is identically zero:841

û(0,t) = 0 , ∀ t ∈ [0,T ).

Notice that all remaining wave numbers are populated. This842

means that all sums involving the scalar k in Eqs. (18) and (21)843

will start effectively from k = 1.844

Also, because modes with mixed even-odd wave-845

number components are allowed, the definitions of Sk in846

Lemma 2 and constant c in Eq. (21) must be replaced by more847

appropriate quantities. Therefore, the corresponding general848

periodic versions of Lemma 7 [Eq. (18)] and the practical849

bound [Eq. (21)] are the following:850

Lemma 7′ (general periodic version of Lemma 7). Let 851

u(x,t) be a velocity field with energy spectrum defined 852

by Eq. (4) and let ω = ∇ × u be its vorticity, defined on 853

the periodicity domain D = [0,2 π ]3. Then the following 854

inequality is verified for all times t ∈ [0,T ) when the sum 855

in the right-hand side is defined, and independently of any 856

evolution equation that u might satisfy: 857

‖ω(·,t)‖∞ �
∞∑

k=1

√
2 k(k + 1) E(k,t) S ′

k, (A1)

where S ′
k ≡ #{k ∈ Z

3 : k − 1/2 < |k| < k + 1/2} is the num- 858

ber of lattice points in a spherical shell of width 1 and radius 859

k ∈ Z+. 860

Practical bound, general case. 861

‖ω(·,t)‖∞ � c′
∞∑

k=1

k2
√

E(k,t), (A2)

where c′ = 6
√

2. 862

We can easily check that the bounds for Taylor-Green, 863

Eqs. (18) and (21), are sharper (by a factor close to 2) to 864

their respective general bounds, Eqs. (A1) and (A2). 865

Finally, Theorem 8 is replaced by the following: 866

Theorem 8′. Let a solution of the 3D Euler equations satisfy 867

the working hypothesis Eq. (17) with k = 1 included. Then 868

the maximal regularity time T∗ of the solution must satisfy 869∫ T∗

0
Li

(
n0(t)

2
− 2,e−δ0(t)

)
dt = ∞.
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