253 research outputs found

    Trabajo de Investigación previo a la obtención del título de Master en Gestión de Proyectos Socio Productivos.

    Get PDF
    Este proyecto de tesis se desarrolla en “EL GRUPO DE TRABAJO LATACUNGA-SIGCHOS DEL CUERPO DE INGENIEROS DEL EJERCITO”, dicha empresa es una institución del estado. El problema principal de la empresa es que no tiene una buena gestión de calidad y esto afecta a los procesos administrativos del Departamento de Seguridad Industrial, Salud Ocupacional, Medio Ambiente y Calidad Total. El Cuerpo de Ingenieros del Ejército, una empresa ya posicionada en el mercado, que trabaja para el beneficio del pueblo Ecuatoriana, en la construcción de puentes, vías, hospitales, escuelas, entre otros en el país o ayuda humanitaria en el mundo . Este trabajo está dirigida hacía el mejoramiento de La Gestión de la Calidad en el Departamento de Seguridad Industrial, Salud Ocupacional y Medio Ambiente y su incidencia en los procesos Administrativos en el Cuerpo de Ingenieros del Ejército Grupo de Trabajo Latacunga-Sigchos en el periodo 2013. Para lo cual utilizaremos Técnicas Científicos en este caso la Auditoria SART que valorara cuales son las falencias que tiene la institución. Luego de ser evaluada realizaremos una comparación del método de Auditoria Ecuatoriano (SART) y las Normas ISO 9001,14001 y 18001 y estableceremos que método es mejor para que pueda implementar la empresa. Para el mejoramiento de la Gestión de la Calidad en el Departamento de Seguridad Industrial, Salud Ocupacional y Medio Ambiente y su incidencia en los procesos Administrativos en el Cuerpo de Ingenieros del Ejército Grupo de Trabajo Latacunga-Sigchos en el periodo 2013 realizaremos una Matriz Planificación de actividades para el cumplimiento de la Auditoria SART por parte de la institución el cual debe incluir un presupuesto, cronograma, responsables, objetivos, metas. Quedando acentuado que la responsabilidad mayor es por parte de las máximas autoridades ya que sin el apoyo y concientización de ellos no se puede realizar nada de lo expuesto y quedaría solo en documento por lo que muy probablemente en un futuro no muy légano tendríamos multas por inspecciones no cumplidas o sanciones por accidentes de trabajo o enfermedades profesionales

    The relationship between truncation and phosphorylation at the C-terminus of tau protein in the paired helical filaments of Alzheimer's disease

    Get PDF
    Acknowledgements: Authors want to express their gratitude to Dr. P. Davies (Albert Einstein College of Medicine, Bronx, NY, USA) and Lester I. Binder (NorthWestern, Chicago, IL, USA) for the generous gift of mAbs (TG-3, Alz-50, and MC1), and (TauC-3), respectively, and to M. en C. Ivan J. Galván-Mendoza for his support in confocal microscopy, and Ms. Maricarmen De Lorenz for her secretarial assistance. We also want to express our gratitude to the Mexican Families who donate the brain of their loved ones affected with Alzheimer's disease, and made possible our research. This work was financially supported by CONACyT grant, No. 142293 (For R.M).Peer reviewedPublisher PD

    Influenza virus differentially activates mTORC1 and mTORC2 signaling to maximize late stage replication

    Get PDF
    <div><p>Influenza A virus usurps host signaling factors to regulate its replication. One example is mTOR, a cellular regulator of protein synthesis, growth and motility. While the role of mTORC1 in viral infection has been studied, the mechanisms that induce mTORC1 activation and the substrates regulated by mTORC1 during influenza virus infection have not been established. In addition, the role of mTORC2 during influenza virus infection remains unknown. Here we show that mTORC2 and PDPK1 differentially phosphorylate AKT upon influenza virus infection. PDPK1-mediated phoshorylation of AKT at a distinct site is required for mTORC1 activation by influenza virus. On the other hand, the viral NS1 protein promotes phosphorylation of AKT at a different site via mTORC2, which is an activity dispensable for mTORC1 stimulation but known to regulate apoptosis. Influenza virus HA protein and down-regulation of the mTORC1 inhibitor REDD1 by the virus M2 protein promote mTORC1 activity. Systematic phosphoproteomics analysis performed in cells lacking the mTORC2 component Rictor in the absence or presence of Torin, an inhibitor of both mTORC1 and mTORC2, revealed mTORC1-dependent substrates regulated during infection. Members of pathways that regulate mTORC1 or are regulated by mTORC1 were identified, including constituents of the translation machinery that once activated can promote translation. mTORC1 activation supports viral protein expression and replication. As mTORC1 activation is optimal midway through the virus life cycle, the observed effects on viral protein expression likely support the late stages of influenza virus replication when infected cells undergo significant stress.</p></div

    Description of an experimental set up for the culture of benthic foraminifera in controlled pH conditions

    Get PDF
    10 páginas, 4 figuras, 1 tabla[EN] Acidification of the oceans is one of the consequences of ongoing increasing atmospheric CO2 concentrations. The effects on organisms that build their shells of calcium carbonate are not sufficiently studied and might be detrimental. Simulating ocean acidification scenarios in the laboratory is a reasonable way to study their response to decreased pH and carbonate ion concentrations. In this study we describe in detail an experimental system to carry out ocean acidification experiments with non-symbiotic benthic foraminifera. We test the performance of the designed experimental set up by running a long-term experiment (90 days) using a potentially suitable benthic foraminiferal species for culturing (Miliolinella spp.). Although foraminifera did not survive the experimental period likely due to ciliates infestation, seawater pH measurement results indicate that the design is suitable for carrying out ocean acidification experiments[ES] La acidificación oceánica es una de las consecuencias del aumento progresivo de la concentración de CO2 en la atmósfera. Los efectos en los organismos que construyen sus conchas con carbonato cálcico no están suficientemente estudiados, pero podrían ser perjudiciales. La simulación en laboratorio de diferentes escenarios de acidificación oceánica es una forma de estudiar la respuesta de esos organismos al descenso de pH y de la concentración del ion carbonato. En este estudio se describe minuciosamente un sistema experimental diseñado para realizar experimentos de acidificación oceánica con foraminíferos bentónicos sin simbiontes. La viabilidad del diseño experimental se ha probado con un experimento de larga duración (90 días) utilizando una especie de foraminífero bentónico potencialmente apta para ser cultivada (Miliolinella spp.). Aunque los foraminíferos no sobrevivieron durante todo el experimento debido a contaminación por ciliados, los resultados de las medidas del pH marino ponen de manifiesto que el diseño es adecuado para llevar a cabo experimentos de acidificación oceánicaThis research leading to these results was supported by the Spanish Ministry of Sciences and Innovation and co-founded by the Fondo Europeo de Desarrollo Regional 2007-2012 (FEDER) through the CATARINA Project (CTM2010-17141/MAR) and GRACCIEPeer reviewe

    Stress hormones promote growth of B16-F10 melanoma metastases: an interleukin 6-and glutathione-dependent mechanism

    Get PDF
    [EN] Background: Interleukin (IL)-6 (mainly of tumor origin) activates glutathione (GSH) release from hepatocytes and its interorgan transport to B16-F10 melanoma metastatic foci. We studied if this capacity to overproduce IL-6 is regulated by cancer cell-independent mechanisms. Methods: Murine B16-F10 melanoma cells were cultured, transfected with red fluorescent protein, injected i.v. into syngenic C57BL/6J mice to generate lung and liver metastases, and isolated from metastatic foci using high-performance cell sorting. Stress hormones and IL-6 levels were measured by ELISA, and CRH expression in the brain by in situ hybridization. DNA binding activity of NF-kappa B, CREB, AP-1, and NF-IL-6 was measured using specific transcription factor assay kits. IL-6 expression was measured by RT-PCR, and silencing was achieved by transfection of anti-IL-6 small interfering RNA. GSH was determined by HPLC. Cell death analysis was distinguished using fluorescence microscopy, TUNEL labeling, and flow cytometry techniques. Statistical analyses were performed using Student's t test. Results: Plasma levels of stress-related hormones (adrenocorticotropin hormone, corticosterone, and noradrenaline) increased, following a circadian pattern and as compared to non-tumor controls, in mice bearing B16-F10 lung or liver metastases. Corticosterone and noradrenaline, at pathophysiological levels, increased expression and secretion of IL-6 in B16-F10 cells in vitro. Corticosterone- and noradrenaline-induced transcriptional up-regulation of IL-6 gene involves changes in the DNA binding activity of nuclear factor-kappa B, cAMP response element-binding protein, activator protein-1, and nuclear factor for IL-6. In vivo inoculation of B16-F10 cells transfected with anti-IL-6-siRNA, treatment with a glucocorticoid receptor blocker (RU-486) or with a beta-adrenoceptor blocker (propranolol), increased hepatic GSH whereas decreased plasma IL-6 levels and metastatic growth. Corticosterone, but not NORA, also induced apoptotic cell death in metastatic cells with low GSH content. Conclusions: Our results describe an interorgan system where stress-related hormones, IL-6, and GSH coordinately regulate metastases growthThis research was supported by grant (SAF2009-07729 and IPT-010000-2010-21) from the Ministerio de Economia y Competitividad (http://www.idi.mineco.gob.es), Spain.Valles, SL.; Benlloch, M.; Rodriguez, ML.; Mena-Mollá, S.; Pellicer, JA.; Asensi-Miralles, MÁ.; Obrador, E.... (2013). Stress hormones promote growth of B16-F10 melanoma metastases: an interleukin 6-and glutathione-dependent mechanism. Journal of Translational Medicine. 11:1-14. https://doi.org/10.1186/1479-5876-11-72S11411Meister, A. (1983). Selective modification of glutathione metabolism. Science, 220(4596), 472-477. doi:10.1126/science.6836290Estrela, J. M., Ortega, A., & Obrador, E. (2006). Glutathione in Cancer Biology and Therapy. Critical Reviews in Clinical Laboratory Sciences, 43(2), 143-181. doi:10.1080/10408360500523878Obrador, E., Benlloch, M., Pellicer, J. A., Asensi, M., & Estrela, J. M. (2011). Intertissue Flow of Glutathione (GSH) as a Tumor Growth-promoting Mechanism. Journal of Biological Chemistry, 286(18), 15716-15727. doi:10.1074/jbc.m110.196261Meister, A. (1991). Glutathione deficiency produced by inhibition of its synthesis, and its reversal; Applications in research and therapy. Pharmacology & Therapeutics, 51(2), 155-194. doi:10.1016/0163-7258(91)90076-xHanigan, M. H. (1995). Expression of gamma-glutamyl transpeptidase provides tumor cells with a selective growth advantage at physiologic concentrations of cyst(e)ine. Carcinogenesis, 16(2), 181-185. doi:10.1093/carcin/16.2.181Obrador, E. (2002). γ-Glutamyl transpeptidase overexpression increases metastatic growth of B16 melanoma cells in the mouse liver. Hepatology, 35(1), 74-81. doi:10.1053/jhep.2002.30277Ballatori, N., & Rebbeor, J. (1998). Roles of MRP2 and oatp1 in Hepatocellular Export of Reduced Glutathione. Seminars in Liver Disease, 18(04), 377-387. doi:10.1055/s-2007-1007171Hodge, D. R., Hurt, E. M., & Farrar, W. L. (2005). The role of IL-6 and STAT3 in inflammation and cancer. European Journal of Cancer, 41(16), 2502-2512. doi:10.1016/j.ejca.2005.08.016Barton, B. E. (2005). Interleukin-6 and new strategies for the treatment of cancer, hyperproliferative diseases and paraneoplastic syndromes. Expert Opinion on Therapeutic Targets, 9(4), 737-752. doi:10.1517/14728222.9.4.737Rose-John, S., Waetzig, G. H., Scheller, J., Grötzinger, J., & Seegert, D. (2007). The IL-6/sIL-6R complex as a novel target for therapeutic approaches. Expert Opinion on Therapeutic Targets, 11(5), 613-624. doi:10.1517/14728222.11.5.613Ara, T., & DeClerck, Y. A. (2010). Interleukin-6 in bone metastasis and cancer progression. European Journal of Cancer, 46(7), 1223-1231. doi:10.1016/j.ejca.2010.02.026Emmenegger, U., & Kerbel, R. S. (2010). Chemotherapy counteracted. Nature, 468(7324), 637-638. doi:10.1038/468637aWang, Y., Niu, X. L., Qu, Y., Wu, J., Zhu, Y. Q., Sun, W. J., & Li, L. Z. (2010). Autocrine production of interleukin-6 confers cisplatin and paclitaxel resistance in ovarian cancer cells. Cancer Letters, 295(1), 110-123. doi:10.1016/j.canlet.2010.02.019Sternberg, E. M. (1997). Neural-immune interactions in health and disease. Journal of Clinical Investigation, 100(11), 2641-2647. doi:10.1172/jci119807Reiche, E. M. V., Nunes, S. O. V., & Morimoto, H. K. (2004). Stress, depression, the immune system, and cancer. The Lancet Oncology, 5(10), 617-625. doi:10.1016/s1470-2045(04)01597-9Besedovsky, H. O., Del Rey, A., Klusman, I., Furukawa, H., Monge Arditi, G., & Kabiersch, A. (1991). Cytokines as modulators of the hypothalamus-pituitary-adrenal axis. The Journal of Steroid Biochemistry and Molecular Biology, 40(4-6), 613-618. doi:10.1016/0960-0760(91)90284-cBethin, K. E., Vogt, S. K., & Muglia, L. J. (2000). Interleukin-6 is an essential, corticotropin-releasing hormone-independent stimulator of the adrenal axis during immune system activation. Proceedings of the National Academy of Sciences, 97(16), 9317-9322. doi:10.1073/pnas.97.16.9317Herr, I., & Pfitzenmaier, J. (2006). Glucocorticoid use in prostate cancer and other solid tumours: implications for effectiveness of cytotoxic treatment and metastases. The Lancet Oncology, 7(5), 425-430. doi:10.1016/s1470-2045(06)70694-5Bernabé, D. G., Tamae, A. C., Biasoli, É. R., & Oliveira, S. H. P. (2011). Stress hormones increase cell proliferation and regulates interleukin-6 secretion in human oral squamous cell carcinoma cells. Brain, Behavior, and Immunity, 25(3), 574-583. doi:10.1016/j.bbi.2010.12.012Antoni, M. H., Lutgendorf, S. K., Cole, S. W., Dhabhar, F. S., Sephton, S. E., McDonald, P. G., … Sood, A. K. (2006). The influence of bio-behavioural factors on tumour biology: pathways and mechanisms. Nature Reviews Cancer, 6(3), 240-248. doi:10.1038/nrc1820Yang, E. V., Kim, S., Donovan, E. L., Chen, M., Gross, A. C., Webster Marketon, J. I., … Glaser, R. (2009). Norepinephrine upregulates VEGF, IL-8, and IL-6 expression in human melanoma tumor cell lines: Implications for stress-related enhancement of tumor progression. Brain, Behavior, and Immunity, 23(2), 267-275. doi:10.1016/j.bbi.2008.10.005Carretero, J., Obrador, E., Anasagasti, M. J., Martin, J. J., Vidal-Vanaclocha, F., & Estrela, J. M. (1999). Clinical and Experimental Metastasis, 17(7), 567-574. doi:10.1023/a:1006725226078Lachize, S., Apostolakis, E. M., van der Laan, S., Tijssen, A. M. I., Xu, J., de Kloet, E. R., & Meijer, O. C. (2009). Steroid receptor coactivator-1 is necessary for regulation of corticotropin-releasing hormone by chronic stress and glucocorticoids. Proceedings of the National Academy of Sciences, 106(19), 8038-8042. doi:10.1073/pnas.0812062106Veenema, A. H., Reber, S. O., Selch, S., Obermeier, F., & Neumann, I. D. (2008). Early Life Stress Enhances the Vulnerability to Chronic Psychosocial Stress and Experimental Colitis in Adult Mice. Endocrinology, 149(6), 2727-2736. doi:10.1210/en.2007-1469Asensi, M., Sastre, J., Pallardo, F. V., Delaasuncion, J. G., Estrela, J. M., & Vina, J. (1994). A High-Performance Liquid Chromatography Method for Measurement of Oxidized Glutathione in Biological Samples. Analytical Biochemistry, 217(2), 323-328. doi:10.1006/abio.1994.1126Ortega, A. L., Carretero, J., Obrador, E., Gambini, J., Asensi, M., Rodilla, V., & Estrela, J. M. (2003). Tumor Cytotoxicity by Endothelial Cells. Journal of Biological Chemistry, 278(16), 13888-13897. doi:10.1074/jbc.m207140200SAKAKIBARA, H., KOYANAGI, A., SUZUKI, T., SUZUKI, A., LING, L., & SHIMOI, K. (2010). Effects of Animal Care Procedures on Plasma Corticosterone Levels in Group-Housed Mice during the Nocturnal Active Phase. Experimental Animals, 59(5), 637-642. doi:10.1538/expanim.59.637Lucot, J. B., Jackson, N., Bernatova, I., & Morris, M. (2005). Measurement of plasma catecholamines in small samples from mice. Journal of Pharmacological and Toxicological Methods, 52(2), 274-277. doi:10.1016/j.vascn.2004.11.004Dobos, J., Kenessey, I., Tímár, J., & Ladányi, A. (2011). Glucocorticoid Receptor Expression and Antiproliferative Effect of Dexamethasone on Human Melanoma Cells. Pathology & Oncology Research, 17(3), 729-734. doi:10.1007/s12253-011-9377-8Tsuji, M., Kuno, T., Tanaka, C., Ichihashi, M., & Mishima, Y. (1983). Beta-adrenergic receptors of B16 melanoma cell. Archives of Dermatological Research, 275(6), 415-416. doi:10.1007/bf00417345Im, A., & Appleman, L. J. (2010). Mifepristone: pharmacology and clinical impact in reproductive medicine, endocrinology and oncology. Expert Opinion on Pharmacotherapy, 11(3), 481-488. doi:10.1517/14656560903535880Smoak, K. A., & Cidlowski, J. A. (2004). Mechanisms of glucocorticoid receptor signaling during inflammation. Mechanisms of Ageing and Development, 125(10-11), 697-706. doi:10.1016/j.mad.2004.06.010Cole, S. W., & Sood, A. K. (2011). Molecular Pathways: Beta-Adrenergic Signaling in Cancer: Figure 1. Clinical Cancer Research, 18(5), 1201-1206. doi:10.1158/1078-0432.ccr-11-0641Matsusaka, T., Fujikawa, K., Nishio, Y., Mukaida, N., Matsushima, K., Kishimoto, T., & Akira, S. (1993). Transcription factors NF-IL6 and NF-kappa B synergistically activate transcription of the inflammatory cytokines, interleukin 6 and interleukin 8. Proceedings of the National Academy of Sciences, 90(21), 10193-10197. doi:10.1073/pnas.90.21.10193McEwen, B. S. (2007). Physiology and Neurobiology of Stress and Adaptation: Central Role of the Brain. Physiological Reviews, 87(3), 873-904. doi:10.1152/physrev.00041.2006Lee, J.-H., Yoo, S. B., Kim, N. Y., Cha, M. J., & Jahng, J. W. (2008). Interleukin-6 and the Hypothalamic-Pituitary-Adrenal Activation in a Tumor Bearing Mouse. International Journal of Neuroscience, 118(3), 355-364. doi:10.1080/00207450701592915Li, Y.-F., He, R.-R., Tsoi, B., Li, X.-D., Li, W.-X., Abe, K., & Kurihara, H. (2012). Anti-Stress Effects of Carnosine on Restraint-Evoked Immunocompromise in Mice through Spleen Lymphocyte Number Maintenance. PLoS ONE, 7(4), e33190. doi:10.1371/journal.pone.0033190Sarabdjitsingh, R. A., Kofink, D., Karst, H., de Kloet, E. R., & Joëls, M. (2012). Stress-Induced Enhancement of Mouse Amygdalar Synaptic Plasticity Depends on Glucocorticoid and ß-Adrenergic Activity. PLoS ONE, 7(8), e42143. doi:10.1371/journal.pone.0042143Moreno-Smith, M., Lutgendorf, S. K., & Sood, A. K. (2010). Impact of stress on cancer metastasis. Future Oncology, 6(12), 1863-1881. doi:10.2217/fon.10.142Tissing, W. J. E., Meijerink, J. P. P., den Boer, M. L., & Pieters, R. (2003). Molecular determinants of glucocorticoid sensitivity and resistance in acute lymphoblastic leukemia. Leukemia, 17(1), 17-25. doi:10.1038/sj.leu.2402733Anderer, G., Schrappe, M., Brechlin, A. M., Lauten, M., Muti, P., Welte, K., & Stanulla, M. (2000). Polymorphisms within glutathione S-transferase genes and initial response to glucocorticoids in childhood acute lymphoblastic leukaemia. Pharmacogenetics, 10(8), 715-726. doi:10.1097/00008571-200011000-00006Thaker, P. H., & Sood, A. K. (2008). Neuroendocrine influences on cancer biology. Seminars in Cancer Biology, 18(3), 164-170. doi:10.1016/j.semcancer.2007.12.005Takeda, T., Kurachi, H., Yamamoto, T., Nishio, Y., Nakatsuji, Y., Morishige, K., … Murata, Y. (1998). Crosstalk between the interleukin-6 (IL-6)-JAK-STAT and the glucocorticoid-nuclear receptor pathway: synergistic activation of IL-6 response element by IL-6 and glucocorticoid. Journal of Endocrinology, 159(2), 323-330. doi:10.1677/joe.0.1590323Rodriguez-Rocha, H., Garcia Garcia, A., Zavala-Flores, L., Li, S., Madayiputhiya, N., & Franco, R. (2012). Glutaredoxin 1 Protects Dopaminergic Cells by Increased Protein Glutathionylation in Experimental Parkinson’s Disease. Antioxidants & Redox Signaling, 17(12), 1676-1693. doi:10.1089/ars.2011.4474Tome, M. E., Jaramillo, M. C., & Briehl, M. M. (2011). Hydrogen peroxide signaling is required for glucocorticoid-induced apoptosis in lymphoma cells. Free Radical Biology and Medicine, 51(11), 2048-2059. doi:10.1016/j.freeradbiomed.2011.09.002Lázár-Molnár, E., Hegyesi, H., Tóth, S., & Falus, A. (2000). AUTOCRINE AND PARACRINE REGULATION BY CYTOKINES AND GROWTH FACTORS IN MELANOMA. Cytokine, 12(6), 547-554. doi:10.1006/cyto.1999.0614Sansone, P., & Bromberg, J. (2012). Targeting the Interleukin-6/Jak/Stat Pathway in Human Malignancies. Journal of Clinical Oncology, 30(9), 1005-1014. doi:10.1200/jco.2010.31.8907Arrigo, A.-P. (1999). Gene expression and the thiol redox state. Free Radical Biology and Medicine, 27(9-10), 936-944. doi:10.1016/s0891-5849(99)00175-6Antelmann, H., & Helmann, J. D. (2011). Thiol-Based Redox Switches and Gene Regulation. Antioxidants & Redox Signaling, 14(6), 1049-1063. doi:10.1089/ars.2010.3400Leibowitz, B., & Yu, J. (2010). Mitochondrial signaling in cell death via the Bcl-2 family. Cancer Biology & Therapy, 9(6), 417-422. doi:10.4161/cbt.9.6.11392Powe, D. G., Voss, M. J., Habashy, H. O., Zänker, K. S., Green, A. R., Ellis, I. O., & Entschladen, F. (2011). Alpha- and beta-adrenergic receptor (AR) protein expression is associated with poor clinical outcome in breast cancer: an immunohistochemical study. Breast Cancer Research and Treatment, 130(2), 457-463. doi:10.1007/s10549-011-1371-zPowe, D. G., & Entschladen, F. (2011). Using β-blockers to inhibit breast cancer progression. Nature Reviews Clinical Oncology, 8(9), 511-512. doi:10.1038/nrclinonc.2011.12

    The role of late Quaternary tectonic activity and sea-level changes on sedimentary processes interaction in the Gulf of Cadiz upper and middle continental slope (SW Iberia)

    Get PDF
    A morphological and seismic-stratigraphic analysis of the Gulf of Cadiz area near the Strait of Gibraltar is presented in this work, focused on the sedimentary evolution of the upper and proximal middle-continental slope since the Mid-Pleistocene. Based on the analysis of seismic reflection profiles and swath bathymetry data, this work analyses the close influence of the activity of buried and outcropping diapiric ridges and late Quaternary sea-level changes on the evolution of contouritic features related to the Mediterranean Outflow Water (MOW) and Eastern North Atlantic Central Water (ENACW), gravitational features and fluid-escape structures. The stratigraphic architecture reveals that, under active diapiric deformation, the upper slope plastered drift grew during low sea-level stages, when sediment supply was high and the ENACW swept the upper slope, contrasting with the present-day highstand situation dominated by northwest-trending MOW flow. The south-estward ENACW flow forced asymmetry and lateral migration of gullies incised in the plastered drift. Two evolutionary stages have been established: 1) After the Mid Pleistocene, activity of diapirs with a NE trend determined the location of the deepest depressions which were infilled by plastered contouritic drifts; 2) Between Late Quaternary and present, a drastic change of buried diapirs growth pattern and orientation to a NW trend enhanced slope-derived gravitational processes affecting the bottom current dynamics. Adjustments to tectonic changes led to a phase of plastered drift growth on the upper slope during which depocenters varied their distribution and orientation. In a long-term the structural control on sedimentation shows a northwestward displacement of deformation, resulting in an overall extension of the contourite depositional system to the NW. In a short-term, sea-level changes favored drift deposition, gullies incision and the strengthening of water masses. This work evidences the importance of tectonic deformation in sedimentation at recent time scales, and the twodirectional interplay between recent tectonic activity and bottom current dynamics.Versión del edito
    corecore