214 research outputs found

    DNA Gel Particles: Particle Preparation and Release Characteristics

    Get PDF
    Aqueous mixtures of oppositely charged polyelectrolytes undergo associative phase separation, resulting in coacervation, gelation, or precipitation. This phenomenon has been exploited here to form DNA gel particles by interfacial diffusion. We report the formation of DNA gel particles by mixing solutions of DNA (either single-stranded (ssDNA) or double-stranded (dsDNA)) with solutions of cationic surfactant CTAB and solutions of the protein lysozyme. Swelling, surface morphology, and DNA release determinations indicate different interaction of ssDNA and dsDNA with both the surfactant and the protein. By using CTAB and lysozyme as the base material, the formation of a DNA reservoir hydrogel, without adding any kind of cross-linker or organic solvent, was demostrated

    Edible coatings enriched with essential oils and their compounds for fresh and fresh-cut fruit

    Get PDF
    Fresh fruit and vegetables consumption has increased in the past few years due to the enhanced awareness of consumers for healthy food. However, these products are highly perishable, and losses can be of great significance if postharvest correct management is not provided. Fresh-cut products are of increasing importance, since they are presented to the consumer in a state that allows for direct and immediate consumption. However, those products are even more perishable since cutting can induce a series of senescence associated responses to wounding, and are more susceptible to microbial spoilage. Edible coatings, which intend to reduce ripening processes and protect the fruit from water loss and spoilage may be a good way to enhance the shelf life of these products. More recently, the inclusion of additives into these edible coatings to increase their effectiveness, such as essential oils and their constituents with antimicrobial and antioxidant activities, has been reported and patented. © 2012 Bentham Science Publishers

    Pomegranate (Punica granatum L.): A medicinal plant with myriad biological properties - A short review

    Get PDF
    The pomegranate, Punica granatum L., which can be found throughout the Mediterranean region, in Southeast Asia, California and Arizona in USA was in ancient times referred as possessing powers of fertility, abundance and good luck (fruit). The biological properties of extracts (antimicrobial, antioxidant, anticancer, anti-inflammatory, among other properties) obtained from several parts of pomegranate is reported in the present work. Due to such properties, the extracts have been used in therapeutics, such as in the prevention of infection, inflammation, cancer, among other applications. However, other aspects are also referred in the present work such as the good practices of culture and fruit preservation, search of new compounds, selection of cultivars through biotechnological techniques for obtaining juice or fruits ready to eat. Such compilation of information was based on the search in the ISI Web of Knowledge (Thomson Reuters) from 2009 up to the beginning of October 2010

    Plasmid DNA hydrogels for biomedical applications

    Get PDF
    In the last few years, our research group has focused on the design and development of plasmid DNA (pDNA) based systems as devices to be used therapeutically in the biomedical field. Biocompatible macro and micro plasmid DNA gels were prepared by a cross-linking reaction. For the first time, the pDNA gels have been investigated with respect to their swelling in aqueous solution containing different additives. Furthermore, we clarified the fundamental and basic aspects of the solute release mechanism from pDNA hydrogels and the significance of this information is enormous as a basic tool for the formulation of pDNA carriers for drug/gene delivery applications. The co-delivery of a specific gene and anticancer drugs, combining chemical and gene therapies in the treatment of cancer was the main challenge of our research. Significant progresses have been made with a new p53 encoding pDNA microgel that is suitable for the loading and release of pDNA and doxorubicin. This represents a strong valuable finding in the strategic development of systems to improve cancer cure through the synergetic effect of chemical and gene therapy

    Volatile profile of Portuguese monofloral honeys: significance in botanical origin determination

    Get PDF
    The volatile profiles of 51 samples from 12 monofloral-labelled Portuguese honey types were assessed. Honeys of bell heather, carob tree, chestnut, eucalyptus, incense, lavender, orange, rape, raspberry, rosemary, sunflower and strawberry tree were collected from several regions from mainland Portugal and from the Azores Islands. When available, the corresponding flower volatiles were comparatively evaluated. Honey volatiles were isolated using two different extraction methods, solid-phase microextraction (SPME) and hydrodistillation (HD), with HD proving to be more effective in the number of volatiles extracted. Agglomerative cluster analysis of honey HD volatiles evidenced two main clusters, one of which had nine sub-clusters. Components grouped by biosynthetic pathway defined alkanes and fatty acids as dominant, namely n-nonadecane, n-heneicosane, n-tricosane and n-pentacosane and palmitic, linoleic and oleic acids. Oxygen-containing monoterpenes, such as cis- and trans-linalool oxide (furanoid), hotrienol and the apocarotenoid α-isophorone, were also present in lower amounts. Aromatic amino acid derivatives were also identified, namely benzene acetaldehyde and 3,4,5-trimethylphenol. Fully grown classification tree analysis allowed the identification of the most relevant volatiles for discriminating the different honey types. Twelve volatile compounds were enough to fully discriminate eleven honey types (92%) according to the botanical origin.info:eu-repo/semantics/publishedVersio

    DNA gel particles: an overview

    Get PDF
    A general understanding of interactions between DNA and oppositely charged compounds forms the basis for developing novel DNA-based materials, including gel particles. The association strength, which is altered by varying the chemical structure of the cationic cosolute, determines the spatial homogeneity of the gelation process, creating DNA reservoir devices and DNA matrix devices that can be designed to release either single- (ssDNA) or double-stranded (dsDNA) DNA. This review covers recent developments on the topic of DNA gel particles formed in water–water emulsion-type interfaces. The degree of DNA entrapment, particle morphology, swelling/dissolution behavior and DNA release responses are discussed as functions of the nature of the cationic agent used. On the basis of designing DNA gel particles for therapeutic purposes, recent studies on the determination of the surface hydrophobicity and the hemolytic and the cytotoxic assessments of the obtained DNA gel particles have been also reported

    FEBS 50th Anniversary Virtual Issue: Portugal

    Get PDF
    This celebratory Virtual Issue for the 50th anniversary of FEBS (2014) highlights the high quality and diversity of biochemistry research carried out in Portugal. Up to 2013, 303 articles were published in FEBS Letters and The FEBS Journal / European Journal of Biochemistry with at least one author having Portugal as an address

    Foeniculum vulgare Essential Oils: Chemical Composition, Antioxidant and Antimicrobial Activities

    Get PDF
    The essential oils from Foeniculum vulgare commercial aerial parts and fruits were isolated by hydrodistillation, with different distillation times (30 min, I h, 2 h and 3 h), and analyzed by GC and GC-MS. The antioxidant ability was estimated using four distinct methods. Antibacterial activity was determined by the agar diffusion method. Remarkable differences, and worrying from the quality and safety point of view, were detected in the essential oils. trans-Anethole (31-36%), alpha-pinene (14-20%) and limonene (11-13%) were the main components of the essentials oil isolated from F. vulgare dried aerial parts, whereas methyl chavicol (= estragole) (79-88%) was dominant in the fruit oils. With the DPPH method the plant oils showed better antioxidant activity than the fruits oils. With the TBARS method and at higher concentrations, fennel essential oils showed a pro-oxidant activity. None of the oils showed a hydroxyl radical scavenging capacity >50%, but they showed an ability to inhibit 5-lipoxygenase. The essential oils showed a very low antimicrobial activity. In general, the essential oils isolated during 2 h were as effective, from the biological activity point of view, as those isolated during 3 h.info:eu-repo/semantics/publishedVersio

    Antibacterial activity of Maroccan Zantaz honey and the influence of its physicochemical parameters using chemometric tools

    Get PDF
    The emergence of multidrug-resistant bacteria has prompted the development of alternative therapies, including the use of natural products with antibacterial properties. The antibacterial properties of Zantaz honey produced in the Moroccan Atlas Mountains against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus was evaluated and analyzed using chemometric tools. Minimum inhibitory concentration (MIC) and Minimum bactericidal concentration (MBC) against S. aureus were the lowest (112.5 54.5 mg/mL), revealing that this species was most sensitive to Zantaz honey. P. aeruginosa showed an intermediate sensitivity (MIC= 118.75 51.9 mg/mL), while E. coli was the most resistant to treatment (MIC = 175 61.2 mg/mL). Content of monosaccharides, certain minerals, and phenolic compounds correlated with antibacterial activity (p < 0.05). Principal component analysis of physicochemical characteristics and antibacterial activity indicated that the parameters most associated with antibacterial activity were color, acidity, and content of melanoidins, fructose, epicatechin, methyl syringate, 4-coumaric acid, and 3-coumaric acidinfo:eu-repo/semantics/publishedVersio

    Mixed Protein Carriers for Modulating DNA Release

    Get PDF
    Aqueous mixtures of oppositely charged polyelectrolytes undergo associative phase separation, resulting in coacervation, gelation, or precipitation. This phenomenon has been exploited in forming DNA gel particles by interfacial diffusion. We report here the formation of DNA gel particles by mixing solutions of double-stranded DNA with aqueous solutions containing two cationic proteins, lysozyme and protamine sulfate. The effect of the lysozyme/protamine ratio on the degree of DNA entrapment, surface morphology, swelling−deswelling behavior, and kinetics of DNA release has been investigated. By mixing the two proteins, we obtain particles that display higher loading efficiency and loading capacity values, in comparison to those obtained in single-protein systems. Examination of the release profiles has shown that in mixed protein particles, complex, dual-stage release kinetics is obtained. The overall release profile is dependent on the lysozyme/protamine ratio. The obtained profiles, or segments of them, are accuratelly fitted using the zero-order and first-order models, and the Weibull function. Fluorescence microscopy studies have suggested that the formation of these particles is associated with the conservation of the secondary structure of DNA. This study presents a new platform for controlled release of DNA from DNA gel particles formed by interfacial diffusion
    corecore