102 research outputs found

    Operative and nonoperative management for renal trauma. Comparison of outcomes. A systematic review and meta-analysis

    Get PDF
    INTRODUCTION: Preservation of kidney and renal function is the goal of nonoperative management (NOM) of renal trauma (RT). The advantages of NOM for minor blunt RT have already been clearly described, but its value for major blunt and penetrating RT is still under debate. We present a systematic review and meta-analysis on NOM for RT, which was compared with the operative management (OM) with respect to mortality, morbidity, and length of hospital stay (LOS). METHODS: The Preferred Reporting Items for Systematic Reviews and Meta-analyses statement was followed for this study. A systematic search was performed on Embase, Medline, Cochrane, and PubMed for studies published up to December 2015, without language restrictions, which compared NOM versus OM for renal injuries. RESULTS: Twenty nonrandomized retrospective cohort studies comprising 13,824 patients with blunt (2,998) or penetrating (10,826) RT were identified. When all RT were considered (American Association for the Surgery of Trauma grades 1-5), NOM was associated with lower mortality and morbidity rates compared to OM (8.3% vs 17.1%, odds ratio [OR] 0.471; 95% confidence interval [CI] 0.404-0.548; P<0.001 and 2% vs 53.3%, OR 0.0484; 95% CI 0.0279-0.0839, P<0.001). Likewise, NOM represented the gold standard treatment resulting in a lower mortality rate compared to OM even when only high-grade RT was considered (9.1% vs 17.9%, OR 0.332; 95% CI 0.155-0.708; P=0.004), be they blunt (4.1% vs 8.1%, OR 0.275; 95% CI 0.0957-0.788; P=0.016) or penetrating (9.1% vs 18.1%, OR 0.468; 95% CI 0.398-0.0552; P<0.001). CONCLUSION: Our meta-analysis demonstrated that NOM for RT is the treatment of choice not only for AAST grades 1 and 2, but also for higher grade blunt and penetrating RT

    Hydrogen Desorption below 150 °c in MgH2-TiH2 Composite Nanoparticles: Equilibrium and Kinetic Properties

    Get PDF
    Reversible hydrogen sorption coupled with the MgH2 &lt;-&gt; Mg phase transformation was achieved in the remarkably low 340-425 K temperature range using MgH2-TiH2 composite nanoparticles obtained by reactive gas-phase condensation of Mg Ti vapors under He/H-2 atmosphere. The equilibrium pressures determined by in situ measurements at low temperature were slightly above those predicted using enthalpy Delta H and entropy Delta S of bulk magnesium. A single van't Hoff fit over a range extended up to 550 K yields the thermodynamic parameters Delta H = 68.1 0.9 kJ/molH(2) and Delta S = 119 2 J/(Kmo1H2) for hydride decomposition. A desorption rate of 0.18 wt % H-2/min was measured at T = 423 K and p(H-2) approximate to 1 mbar, i.e., close to equilibrium, without using a Pd catalysts. The nanoparticles displayed a small absorption desorption pressure hysteresis even at low temperatures. We critically discuss the influence exerted by nanostructural features such as interface free energy, elastic clamping, and phase mixing at the single nanopartide level on equilibrium and kinetic properties of hydrogen sorption

    Biological application of Compressed Sensing Tomography in the Scanning Electron Microscope

    Get PDF
    The three-dimensional tomographic reconstruction of a biological sample, namely collagen fibrils in human dermal tissue, was obtained from a set of projection-images acquired in the Scanning Electron Microscope. A tailored strategy for the transmission imaging mode was implemented in the microscope and proved effective in acquiring the projections needed for the tomographic reconstruction. Suitable projection alignment and Compressed Sensing formulation were used to overcome the limitations arising from the experimental acquisition strategy and to improve the reconstruction of the sample. The undetermined problem of structure reconstruction from a set of projections, limited in number and angular range, was indeed supported by exploiting the sparsity of the object projected in the electron microscopy images. In particular, the proposed system was able to preserve the reconstruction accuracy even in presence of a significant reduction of experimental projections

    Thermally activated magnetization reversal in bulk BiFe0.5Mn0.5O3

    Full text link
    We report on the synthesis and characterization of BiFe0.5Mn0.5O3, a potential type-I multiferroic compound displaying temperature induced magnetization reversal. Bulk samples were obtained by means of solid state reaction carried out under the application of hydrostatic pressure at 6 GPa and 1100{\deg}C. The crystal structure is an highly distorted perovskite with no cation order on the B site, where, besides a complex scheme of tilt and rotations of the TM-O6 octahedra, large off-centering of the bismuth ions is detected. Below T1 = 420 K the compound undergoes a first weak ferromagnetic transition related to the ordering of iron rich clusters. At lower temperatures (just below RT) two distinct thermally activated mechanisms are superimposed, inducing at first an enhancement of the magnetization at T2 = 288 K, then a spontaneous reversal process centered at T3 = 250 K, finally giving rise to a negative response. The application of fields higher than 1500 Oe suppresses the process, yielding a ferromagnetic like behaviour. The complementary use of SQuID magnetometry and M\"ossbauer spectroscopy allowed the interpretation of the overall magnetic behaviour in terms of an uncompensated weak competitive coupling between non-equivalent clusters of interactions characterized by different critical temperatures and resultant magnetizations. PACS numbers: 75.85.+t, 75.60.Jk, 76.80.+y, 75.30.Et, 75.30.KzComment: 30 pages, 13 figure

    High coercitivity carbon embedded L10-FePt ferromagnetic nanoparticles

    Get PDF
    Stoichiometric FePt nanoparticles in the tetragonal L10 phase, (Ku = 6.6?107 erg/cm3) are one of the leading candidates for next generation high-density recording media, allowing theoretical grain stability down to 3nm [1]. As-synthesized FePt nanoparticles produced by the conventional soft chemical route (polyol process) [2,3] shows disordered face centered cubic (fcc) structure with low Ku and superparamagnetic behavior at RT. The ordered L10 tetragonal structure is usually obtained by post-annealing in a reducing environment [4,5] giving rise to particle aggregation produced by sintering that affects significantly both the final particle size and the polidispersity. A preliminary work we performed pointed out that a direct synthesis of ferromagnetic particles, based on the decomposition of Fe(acac)3 and Pt(acac)2 in reducing solvent and inert atmosphere, is made possible by the increase of the reaction temperature at 290-330?C obtained by the use of Triton X-100 as solvent and polyvinylpyrrolidone (PVP) as protective agent. The resulting nanoparticles are ferromagnetic at RT with coercitive field (Hc) ranging from 0.4 to 1.0 KOe depending on the synthesis temperature. However, as evidenced by TEM analyses, they are magnetically aggregate and, for synthesis temperatures above 300?C, embedded in an amorphous matrix produced by partial decomposition of the solvent. These observations suggested us a novel approach to the synthesis of non-aggregate ferromagnetic nanoparticles. The basic idea is to block the nanoparticles in a rigid matrix, during the synthesis, before they become ferromagnetic, to prevent magnetic aggregation. Using PEG-600 as solvent and quickly raising the temperature above 300?C cause the polyol to condense in flakes. The rapid heating, joined to the increased viscosity, limits the diffusion of the nutrient phase to the growing nuclei, resulting in monodisperse nanoparticles, with a typical size ranging around 5nm (determined by XRD and TEM), randomly dispersed in the condensed matrix. In agreement with the XRD analysis, pointing out a disordered fcc structure, the magnetic measurements show at RT a superparamagnetic behaviour of the as-grown particles, with a blocking temperature TB of 60K and large distribution of energy barriers. The phase transformation to the ferromagnetic ordered tetragonal L10 structure is achieved by thermal annealing in dynamic high vacuum; the annealing transforms the organic matrix into amorphous carbon that preserves the original nanoparticle size and prevents the aggregation up to 1000?C, where it transforms into pyrolitic graphite. XRD shows the appearing of the L10 diffraction peaks after a 1 hour treatment at 650? and an almost complete phase transition after 4hours at the same temperature, where a coercitive field (Hc) of 2,5kOe at RT and 13kOe at 5K is detected. Annealing at higher temperatures, even if results in a further enhancement of the structural properties, gives rise to complex behaviour of the hysteresis, whose origin is still under investigation

    Exploiting the Reducing Properties of Lignin for the Development of an Effective Lignin@Cu2O Pesticide

    Get PDF
    Lignin is a natural polymer produced in huge amounts by the paper industry. Innovative applications of lignin, especially in agriculture, represent a valuable way to develop a more sustainable economy. Its antioxidant and antimicrobial properties, combined with its biodegradability, make it particularly attractive for the development of plant protection products. Copper is an element that has long been used as a pesticide in agriculture. Despite its recognized antimicrobial activity, the concerns derived from its negative environmental impact is forcing research to move toward the development of more effective and sustainable copper-based pesticides. Here a simple and sustainable way of synthesizing a new hybrid material composed of Cu2O nanocrystals embedded into lignin, named Lignin@Cu2O is presented. The formation of cuprite nanocrystals leaves the biopolymer intact, as evidenced by infrared spectroscopy, gel permeation chromatography, and Pyrolysis-GC analysis. The combined activity of lignin and cuprite make Lignin@Cu2O effective against Listeria monocytogenes and Rhizoctonia solani at low copper dosage, as evidenced by in vitro and in vivo tests conducted on tomato plants

    Evaluation of in vivo labelled dendritic cell migration in cancer patients

    Get PDF
    BACKGROUND: Dendritic Cell (DC) vaccination is a very promising therapeutic strategy in cancer patients. The immunizing ability of DC is critically influenced by their migration activity to lymphatic tissues, where they have the task of priming naïve T-cells. In the present study in vivo DC migration was investigated within the context of a clinical trial of antitumor vaccination. In particular, we compared the migration activity of mature Dendritic Cells (mDC) with that of immature Dendritic Cells (iDC) and also assessed intradermal versus subcutaneous administration. METHODS: DC were labelled with (99m)Tc-HMPAO or (111)In-Oxine, and the presence of labelled DC in regional lymph nodes was evaluated at pre-set times up to a maximum of 72 h after inoculation. Determinations were carried out in 8 patients (7 melanoma and 1 renal cell carcinoma). RESULTS: It was verified that intradermal administration resulted in about a threefold higher migration to lymph nodes than subcutaneous administration, while mDC showed, on average, a six-to eightfold higher migration than iDC. The first DC were detected in lymph nodes 20–60 min after inoculation and the maximum concentration was reached after 48–72 h. CONCLUSIONS: These data obtained in vivo provide preliminary basic information on DC with respect to their antitumor immunization activity. Further research is needed to optimize the therapeutic potential of vaccination with DC

    Nkx2-5+Islet1+ Mesenchymal Precursors Generate Distinct Spleen Stromal Cell Subsets and Participate in Restoring Stromal Network Integrity

    Get PDF
    SummarySecondary lymphoid organ stromal cells comprise different subsets whose origins remain unknown. Herein, we exploit a genetic lineage-tracing approach to show that splenic fibroblastic reticular cells (FRCs), follicular dendritic cells (FDCs), marginal reticular cells (MRCs), and mural cells, but not endothelial cells, originate from embryonic mesenchymal progenitors of the Nkx2-5+Islet1+ lineage. This lineage include embryonic mesenchymal cells with lymphoid tissue organizer (LTo) activity capable also of supporting ectopic lymphoid-like structures and a subset of resident spleen stromal cells that proliferate and regenerate the splenic stromal microenvironment following resolution of a viral infection. These findings identify progenitor cells that generate stromal diversity in spleen development and repair and suggest the existence of multipotent stromal progenitors in the adult spleen with regenerative capacity
    corecore