5 research outputs found

    Anisotropy of the galaxy cluster X-ray luminosity-temperature relation

    Full text link
    We introduce a new test to study the Cosmological Principle with galaxy clusters. Galaxy clusters exhibit a tight correlation between the luminosity and temperature of the X-ray-emitting intracluster medium. While the luminosity measurement depends on cosmological parameters through the luminosity distance, the temperature determination is cosmology-independent. We exploit this property to test the isotropy of the luminosity distance over the full extragalactic sky, through the normalization aa of the LXTL_X-T scaling relation and the cosmological parameters Ωm\Omega_m and H0H_0. We use two almost independent galaxy cluster samples: the ASCA Cluster Catalog (ACC) and the XMM Cluster Survey (XCS-DR1). Interestingly enough, these two samples appear to have the same pattern for aa with respect to the Galactic longitude. We also identify one sky region within l(15o,90o)l\sim (-15^o,90^o) (Group A) that shares very different best-fit values for aa for both samples. We find the deviation of Group A to be 2.7σ2.7\sigma for ACC and 3.1σ3.1\sigma for XCS-DR1. This tension is not relieved after excluding possible outliers or after a redshift conversion to the CMB frame is applied. Using also the HIFLUGCS sample, we show that a possible excess of cool-core clusters in this region, cannot explain the obtained deviations. Moreover, we tested for a dependence of the LXTL_X-T relation on supercluster environment. We indeed find a trend for supercluster members to be underluminous compared to field clusters. However, the fraction of supercluster members is similar in the different sky regions. Constraining Ωm\Omega_m and H0H_0 via the redshift evolution of LXTL_X-T and the luminosity distance, we obtain approximately the same deviation amplitudes as for aa. The observed behavior of Ωm\Omega_m for the sky regions that coincide with the CMB dipole is similar to what was found with other cosmological probes as well.Comment: 18 pages, 15 figures, accepted for publication in A&

    The eROSITA view of the Abell 3391/95 field: The Northern Clump. The largest infalling structure in the longest known gas filament observed with eROSITA, XMM-Newton, and Chandra

    Full text link
    SRG/eROSITA PV observations revealed the A3391/95 cluster system and the Northern Clump (MCXC J0621.7-5242 galaxy cluster) are aligning along a cosmic filament in soft X-rays, similarly to what has been seen in simulations before. We aim to understand the dynamical state of the Northern Clump as it enters the atmosphere (3×R2003\times R_{200}) of A3391. We analyzed joint eROSITA, XMM-Newton, and Chandra observations to probe the morphological, thermal, and chemical properties of the Northern Clump from its center out to a radius of 988 kpc (R200R_{200}). We utilized the ASKAP/EMU radio data, DECam optical image, and Planck y-map to study the influence of the WAT radio source on the Northern Clump central ICM. From the Magneticum simulation, we identified an analog of the A3391/95 system along with an infalling group resembling the Northern Clump. The Northern Clump is a WCC cluster centered on a WAT radio galaxy. The gas temperature over 0.20.5R5000.2-0.5R_{500} is kBT500=1.99±0.04k_BT_{500}=1.99\pm0.04 keV. We employed the MTM-T scaling relation and obtained a mass estimate of M500=(7.68±0.43)×1013MM_{500}=(7.68\pm0.43)\times10^{13}M_{\odot} and R500=(636±12)R_{500}=(636\pm12) kpc. Its atmosphere has a boxy shape and deviates from spherical symmetry. We identify a southern surface brightness edge, likely caused by subsonic motion relative to the filament gas. At  ⁣R500\sim\! R_{500}, the southern atmosphere appears to be 42% hotter than its northern atmosphere. We detect a downstream tail pointing toward the north with a projected length of 318\sim318 kpc, plausibly the result of ram pressure stripping. The analog group in the Magneticum simulation is experiencing changes in its gas properties and a shift between the position of the halo center and that of the bound gas, while approaching the main cluster pair.Comment: 24 pages, 17 figures (main text), 6 figures (appendix). Submitted to A&A for the Special Issue: The Early Data Release of eROSITA and Mikhail Pavlinsky ART-XC on the SRG Mission. For more information, see https://astro.uni-bonn.de/~averonica/NorthernClump/eROSITA_A3391_Northern_Clump_AIfA.htm

    Is the observable Universe consistent with the cosmological principle?

    Get PDF
    The cosmological principle (CP)—the notion that the Universe is spatially isotropic and homogeneous on large scales—underlies a century of progress in cosmology. It is conventionally formulated through the Friedmann-Lemaître-Robertson-Walker (FLRW) cosmologies as the spacetime metric, and culminates in the successful and highly predictive Λ-Cold-Dark-Matter (ΛCDM) model. Yet, tensions have emerged within the ΛCDM model, most notably a statistically significant discrepancy in the value of the Hubble constant, H0. Since the notion of cosmic expansion determined by a single parameter is intimately tied to the CP, implications of the H0 tension may extend beyond ΛCDM to the CP itself. This review surveys current observational hints for deviations from the expectations of the CP, highlighting synergies and disagreements that warrant further study. Setting aside the debate about individual large structures, potential deviations from the CP include variations of cosmological parameters on the sky, discrepancies in the cosmic dipoles, and mysterious alignments in quasar polarizations and galaxy spins. While it is possible that a host of observational systematics are impacting results, it is equally plausible that precision cosmology may have outgrown the FLRW paradigm, an extremely pragmatic but non-fundamental symmetry assumption

    The eROSITA Final Equatorial-Depth Survey (eFEDS). X-ray properties and scaling relations of galaxy clusters and groups.

    No full text
    International audienceContext. Scaling relations link the physical properties of clusters at cosmic scales. They are used to probe the evolution of large-scale structure, estimate observables of clusters, and constrain cosmological parameters through cluster counts. Aims. We investigate the scaling relations between X-ray observables of the clusters detected in the eFEDS field using Spectrum-Roentgen-Gamma/eROSITA observations taking into account the selection effects and the distributions of observables with cosmic time. Methods. We extract X-ray observables ( L X , L bol , T , M gas , Y X ) within R 500 for the sample of 542 clusters in the eFEDS field. By applying detection and extent likelihood cuts, we construct a subsample of 265 clusters with a contamination level of 4σ confidence level, but our results are nevertheless in good agreement with the simulations including non-gravitational physics, and the recent results that take into account selection effects. Conclusions. The strong deviations we find from the self-similar scenario indicate that the non-gravitational effects play an important role in shaping the observed physical state of clusters. This work extends the scaling relations to the low-mass, low-luminosity galaxy cluster and group regime using eFEDS observations, demonstrating the ability of eROSITA to measure emission from the intracluster medium out to R 500 with survey-depth exposures and constrain the scaling relations in a wide mass-luminosity-redshift range

    The Abell 3391/95 galaxy cluster system : a 15 Mpc intergalactic medium emission filament, a warm gas bridge, infalling matter clumps, and (re-) accelerated plasma discovered by combining SRG/eROSITA data with ASKAP/EMU and DECam data

    No full text
    Context. Inferences about dark matter, dark energy, and the missing baryons all depend on the accuracy of our model of large-scale structure evolution. In particular, with cosmological simulations in our model of the Universe, we trace the growth of structure, and visualize the build-up of bigger structures from smaller ones and of gaseous filaments connecting galaxy clusters.Aims. Here we aim to reveal the complexity of the large-scale structure assembly process in great detail and on scales from tens of kiloparsecs up to more than 10 Mpc with new sensitive large-scale observations from the latest generation of instruments. We also aim to compare our findings with expectations from our cosmological model.Methods. We used dedicated SRG/eROSITA performance verification (PV) X-ray, ASKAP/EMU Early Science radio, and DECam optical observations of a similar to 15 deg(2) region around the nearby interacting galaxy cluster system A3391/95 to study the warm-hot gas in cluster outskirts and filaments, the surrounding large-scale structure and its formation process, the morphological complexity in the inner parts of the clusters, and the (re-)acceleration of plasma. We also used complementary Sunyaev-Zeldovich (SZ) effect data from the Planck survey and custom-made Galactic total (neutral plus molecular) hydrogen column density maps based on the HI4PI and IRAS surveys. We relate the observations to expectations from cosmological hydrodynamic simulations from the Magneticum suite.Results. We trace the irregular morphology of warm and hot gas of the main clusters from their centers out to well beyond their characteristic radii, r(200). Between the two main cluster systems, we observe an emission bridge on large scale and with good spatial resolution. This bridge includes a known galaxy group but this can only partially explain the emission. Most gas in the bridge appears hot, but thanks to eROSITA's unique soft response and large field of view, we discover some tantalizing hints for warm, truly primordial filamentary gas connecting the clusters. Several matter clumps physically surrounding the system are detected. For the "Northern Clump," we provide evidence that it is falling towards A3391 from the X-ray hot gas morphology and radio lobe structure of its central AGN. Moreover, the shapes of these X-ray and radio structures appear to be formed by gas well beyond the virial radius, r(100), of A3391, thereby providing an indirect way of probing the gas in this elusive environment. Many of the extended sources in the field detected by eROSITA are also known clusters or new clusters in the background, including a known SZ cluster at redshift z = 1. We find roughly an order of magnitude more cluster candidates than the SPT and ACT surveys together in the same area. We discover an emission filament north of the virial radius of A3391 connecting to the Northern Clump. Furthermore, the absorption-corrected eROSITA surface brightness map shows that this emission filament extends south of A3395 and beyond an extended X-ray-emitting object (the "Little Southern Clump") towards another galaxy cluster, all at the same redshift. The total projected length of this continuous warm-hot emission filament is 15 Mpc, running almost 4 degrees across the entire eROSITA PV observation field. The Northern and Southern Filament are each detected at >4 sigma. The Planck SZ map additionally appears to support the presence of both new filaments. Furthermore, the DECam galaxy density map shows galaxy overdensities in the same regions. Overall, the new datasets provide impressive confirmation of the theoretically expected structure formation processes on the individual system level, including the surrounding warm-hot intergalactic medium distribution; the similarities of features found in a similar system in the Magneticum simulation are striking. Our spatially resolved findings show that baryons indeed reside in large-scale warm-hot gas filaments with a clumpy structure
    corecore