716 research outputs found
First record of the sawfly family Xyelidae (Hymenoptera) from Malta
Xyela cf. altenhoferi Blank, 2013 is recorded from Buskett (Malta). Its host is Pinus halepensis. This is the first species of the sawfly family Xyelidae to be found in the Maltese Islands.peer-reviewe
The whiteflies (Hemiptera: Aleyrodidae) of Europe and the Mediterranean Basin
The whitefly fauna of Europe and the Mediterranean Basin comprises 56 species that are considered to be native or naturalized, accommodated within 25 genera. Presented here are a check-list, an identification key to puparia, and a brief account of each species including its distribution and host-plant range. The puparium of each species is illustrated. One new nomenclatural combination (Aleuroclava similis, from Aleurotuberculatus) and two new synonymies (Parudamoselis kesselyakiwith Ceraleurodicus varus, Asterobemisia nigrini with A. paveli) are proposed. Three nominal species (Aleurodes capreae, A. fraxini, and Aleyrodes campanulae) are here treated as nomina dubia. Species which, in the study area, have only been recorded from glasshouses are discussed. Four additional species, not yet recorded from the region, are included in the discussion, two of them because a particular quarantine risk is perceived and two because they are notifiable pests in European Union quarantine legislatio
Distinct epigenetic and gene expression changes in rat hippocampal neurons after Morris water maze training
Gene transcription and translation in the hippocampus is of critical importance in hippocampus-dependent memory formation, including during Morris water maze (MWM) learning. Previous work using gene deletion models has shown that the immediate-early genes (IEGs) c-Fos, Egr-1 and Arc are crucial for such learning. Recently, we reported that induction of IEGs in sparse dentate gyrus neurons requires ERK MAPK signaling and downstream formation of a distinct epigenetic histone mark (i.e. phospho-acetylated histone H3). Until now, this signaling, epigenetic and gene transcriptional pathway has not been comprehensively studied in the MWM model. Therefore, we conducted a detailed study of the phosphorylation of ERK1/2 and serine10 in histone H3 (H3S10p) and induction of IEGs in the hippocampus of MWM trained rats and matched controls. MWM training evoked consecutive waves of ERK1/2 phosphorylation and H3S10 phosphorylation, as well as c-Fos, Egr-1 and Arc induction in sparse hippocampal neurons. The observed effects were most pronounced in the dentate gyrus. A positive correlation was found between the average latency to find the platform and the number of H3S10p-positive dentate gyrus neurons. Furthermore, chromatin immuno-precipitation (ChIP) revealed a significantly increased association of phospho-acetylated histone H3 (H3K9ac-S10p) with the gene promoters of c-Fos and Egr-1, but not Arc, after MWM exposure compared with controls. Surprisingly, however, we found very little difference between IEG responses (regarding both protein and mRNA) in MWM-trained rats compared with matched swim controls. We conclude that exposure to the water maze evokes ERK MAPK activation, distinct epigenetic changes and IEG induction predominantly in sparse dentate gyrus neurons. It appears, however, that a specific role for IEGs in the learning aspect of MWM training may become apparent in downstream AP-1- and Egr-1-regulated (second wave) genes and Arc-dependent effector mechanisms
A novel HLA-B18 restricted CD8+ T cell epitope is efficiently cross-presented by dendritic cells from soluble tumor antigen
NY-ESO-1 has been a major target of many immunotherapy trials because it is expressed by various cancers and is highly immunogenic. In this study, we have identified a novel HLA-B*1801-restricted CD8<sup>+</sup>T cell epitope, NY-ESO-1<sub>88–96</sub> (LEFYLAMPF) and compared its direct- and cross-presentation to that of the reported NY-ESO-1<sub>157–165</sub> epitope restricted to HLA-A*0201. Although both epitopes were readily cross-presented by DCs exposed to various forms of full-length NY-ESO-1 antigen, remarkably NY-ESO-1<sub>88–96</sub> is much more efficiently cross-presented from the soluble form, than NY-ESO-1<sub>157–165</sub>. On the other hand, NY-ESO-1<sub>157–165</sub> is efficiently presented by NY-ESO-1-expressing tumor cells and its presentation was not enhanced by IFN-γ treatment, which induced immunoproteasome as demonstrated by Western blots and functionally a decreased presentation of Melan A<sub>26–35</sub>; whereas NY-ESO-1<sub>88–96</sub> was very inefficiently presented by the same tumor cell lines, except for one that expressed high level of immunoproteasome. It was only presented when the tumor cells were first IFN-γ treated, followed by infection with recombinant vaccinia virus encoding NY-ESO-1, which dramatically increased NY-ESO-1 expression. These data indicate that the presentation of NY-ESO-1<sub>88–96</sub> is immunoproteasome dependent. Furthermore, a survey was conducted on multiple samples collected from HLA-B18+ melanoma patients. Surprisingly, all the detectable responses to NY-ESO-1<sub>88–96</sub> from patients, including those who received NY-ESO-1 ISCOMATRIX™ vaccine were induced spontaneously. Taken together, these results imply that some epitopes can be inefficiently presented by tumor cells although the corresponding CD8<sup>+</sup>T cell responses are efficiently primed in vivo by DCs cross-presenting these epitopes. The potential implications for cancer vaccine strategies are further discussed
Somatic TP53 Mutations Are Detectable in Circulating Tumor DNA from Children with Anaplastic Wilms Tumors.
BACKGROUND: Diffuse anaplastic Wilms tumor (DAWT) is a rare, high-risk subtype that is often missed on diagnostic needle biopsy. Somatic mutations in TP53 are associated with the development of anaplasia and with poorer survival, particularly in advanced-stage disease. Early identification of DAWT harboring TP53 abnormalities could improve risk stratification of initial therapy and monitoring for recurrence. METHODS: Droplet digital polymerase chain reaction (ddPCR) was used to evaluate 21 samples from 4 patients with DAWT. For each patient, we assessed TP53 status in frozen tumor, matched germline DNA, and circulating tumor DNA (ctDNA) from plasma, serum, and urine collected throughout treatment. RESULTS: Mutant TP53 was detectable in ctDNA from plasma and serum in all patients. We did not detect variant TP53 in the same volume (200 μl) of urine. One patient displayed heterogeneity of TP53 in the tumor despite both histological sections displaying anaplasia. Concentration of ctDNA from plasma/serum taken prenephrectomy varied significantly between patients, ranging from 0.44 (0.05-0.90) to 125.25 (109.75-140.25) copies/μl. We observed variation in ctDNA throughout treatment, and in all but one patient, ctDNA levels fell significantly following nephrectomy. CONCLUSION: We demonstrate for the first time that ddPCR is an effective method for detection of mutant TP53 in ctDNA from children with DAWT even when there is intratumoral somatic heterogeneity. This should be further explored in a larger cohort of patients, as early detection of circulating variant TP53 may have significant clinical impact on future risk stratification and surveillance
Assessing inter-beach differences in semi-terrestrial arthropod assemblages on Maltese pocket sandy beaches (Central Mediterranean)
The distinctiveness of macrofaunal assemblages on different sandy beaches in the Maltese Islands was previously suggested by different single-season studies. A multi-seasonal sampling programme using pitfall trapping was implemented on four Maltese beaches to test the occurrence of this phenomenon. A total of 29,302 individuals belonging to 191 species were collected over a 2-year period, during which the beaches were sampled once per calendar season. A total of 77 species were recorded from single Maltese beaches only, of which nine were psammophiles. Non-metric multidimensional scaling analyses of pitfall trap species-abundance data resulted in a weak separation pattern, with samples grouping mainly in terms of beach and island rather than in terms of season or year of sampling, No physical variable could conclusively explain these patterns. It is concluded that although operating on Maltese beaches, macrofaunal assemblage distinctiveness is weaker than originally thought and can be attributed to the presence/absence or abundance of just a few psammophilic species. It is postulated that this phenomenon may be related to the ‘pocket beach’ nature of Maltese beaches, where headlands on either side of the beach to a large extent prevent the occurrence of longshore currents, resulting in semi-isolation of the populations of psammophilic species. A large number of single-beach records reported in this study highlight the high degree of beta diversity and spatial heterogeneity of Maltese beaches, and the conservation importance of the individual beach macrofaunal assemblages.peer-reviewe
Baseline ecological data collection from the marine area around Filfla (Malta, Central Mediterranean Sea)
Acoustic and limited video sampling were carried out in a 1.1 nautical mile-radius area
around Filfla, an islet 4.4 to the south-west of Malta, to characterize the benthos and the habitat type
distribution. In addition, identified priority areas were sampled during SCUBA diving surveys. A total of
173 species were recorded during the current survey. Rhodophytes were the most represented (29 species),
followed by molluscs (25 species). The biotic assemblages recorded from the marine area around Filfla are
generally representative of those found in Maltese inshore waters.peer-reviewe
Comprehensive molecular characterisation of epilepsy-associated glioneuronal tumours
Glioneuronal tumours are an important cause of treatment-resistant epilepsy. Subtypes of tumour are often poorly discriminated by histological features and may be difficult to diagnose due to a lack of robust diagnostic tools. This is illustrated by marked variability in the reported frequencies across different epilepsy surgical series. To address this, we used DNA methylation arrays and RNA sequencing to assay the methylation and expression profiles within a large cohort of glioneuronal tumours. By adopting a class discovery approach, we were able to identify two distinct groups of glioneuronal tumour, which only partially corresponded to the existing histological classification. Furthermore, by additional molecular analyses, we were able to identify pathogenic mutations in BRAF and FGFR1, specific to each group, in a high proportion of cases. Finally, by interrogating our expression data, we were able to show that each molecular group possessed expression phenotypes suggesting different cellular differentiation: astrocytic in one group and oligodendroglial in the second. Informed by this, we were able to identify CCND1, CSPG4, and PDGFRA as immunohistochemical targets which could distinguish between molecular groups. Our data suggest that the current histological classification of glioneuronal tumours does not adequately represent their underlying biology. Instead, we show that there are two molecular groups within glioneuronal tumours. The first of these displays astrocytic differentiation and is driven by BRAF mutations, while the second displays oligodendroglial differentiation and is driven by FGFR1 mutations
Strengthening extended Gravity constraints with combined systems:\\ \texorpdfstring{}{} bounds from Cosmology and the Galactic Center
MOdified Gravity (MoG)) is widely constrained in different astrophysical and
astronomical systems. Since these different systems are based on different
scales it is not trivial to get a combined constraint that is based on
different phenomenology. Here, for the first time (to the best of our
knowledge), we combine constraints for MoG from late time Cosmology and the
orbital motion of the stars around the galactic center. MoG give different
potentials that are tested directly in the galactic center. The cosmological
data set includes the type Ia supernova and baryon acoustic oscillations. For
the galactic star center data set we use the published orbital measurements of
the S2 star. The constraints on the universal parameter from the
combined system give: for the Hu-Sawicki model,
while for the Starobinsky model. These results
improve on the cosmological results we obtain. The results show that {{\it
combined constraint}} from different systems yields a stronger constraint for
different theories under consideration. Future measurements from the galactic
center and from cosmology will give better constraints on MoG.Comment: 8 pages, 2 figure
- …
