13 research outputs found

    The impact of ship traffic and harbor activities on the atmospheric pollution in two northern adriatic ports: Venice and Rijeka

    Get PDF
    The aim of the POSEIDON project is to quantify the relative contribution of maritime traffic and harbor activities to atmospheric pollutants concentration in four port-cities of the Adriatic Sea. This study focuses on the harbors of Venice and Rijeka. In order to investigate the main pollution sources, emission inventories were used as input for receptor models: PMF (positive matrix factorization) and PCA (principal components analysis); moreover source identification was also conducted using PAHs diagnostic ratios. The ship traffic impact was quantified: i) on gaseous and particulate PAHs, collected using a new method which consisted in a double simultaneous sampling, in different wind sectors; ii) applying PMF to data of metals, PAHs and ions in PM10; iii) using the vanadium concentration according to the Agrawal methodology

    Impact of maritime transport on particulate matter concentrations and chemical compositions in four port-cities of the Adriatic/Ionian area: an overview of the results of POSEIDON project

    Get PDF
    Pollutant emissions from ships and harbour activities constitute an important source of pollution of coastal areas with potential influences on the climate and the health of their inhabitants. A recent review (Viana et al., 2014) shows that these emissions could have an important impact on the Mediterranean and that there is a lack of data for the Eastern and South-Eastern part of this area. This work presents an analysis of the impact of ship emissions to atmospheric particle concentrations (PM) in four important port-cities (Patras Greece, Brindisi and Venice Italy, and Rijeka Croatia) of the Adriatic/Ionian area. The study was performed within the POSEIDON project (Pollution monitoring of ship emissions: an integrated approach for harbours of the Adriatic basin, funded within the MED Programme 2007-2013). The study uses an integrated approach using emission inventories, dispersion modelling and measurements taken at high temporal resolution (1 min) and low temporal resolution for chemical characterization of PM. The emission inventories of the four port-cities show that ships contribute between 11.7% and 31.0% of the total PM emissions being a source locally comparable with road traffic (ranging between 11.8% and 26.6%). The source apportionment using the receptor model PMF showed and oil combustion source (that includes ship emissions), characterized by V and Ni, in Brindisi, Venice and Rijeka with V/Ni ratio ranging between 1.4 and 4.2 indicating local differences in chemical profiles of the emissions. The V concentrations were used to evaluate the contributions of primary ship emissions to PM (Agrawal et al., 2009) that resulted between 1.3% and 2.8%. The contribution to secondary sulphate was 11% of PM2.5 in Brindisi (Cesari et al., 2014). The analysis of high-temporal resolution measurements taken near the harbour areas of Venice, Patras and Brindisi showed a contribution of ship emissions to PM2.5 varying between 3.5% and 7.4%. The relative contribution to particle number concentrations (PNC) was larger at all sites (between 6% and 26%). This demonstrates that ship particulate missions include mainly small and ultrafine particles. The trend of the impact of passenger ships primary emissions to PM2.5 concentrations in Venice between 2007 and 2012 showed a decrease from 7% (+-1%) to 3.5% (+-1%) even if the gross tonnage of ship traffic increased in the same period by 47% (Contini et al., 2015). This was a consequence of the use of low-sulphur content fuels due to the application of local mitigation strategies and of the European Directive 2005/33/EC. The WRF-CAMx modeling system was applied over the Central and Eastern Mediterranean so as to identify the air quality impact of ship emissions. The zero-out modelling method was implemented involving model simulations performed while including and omitting the ship emissions. The results for both gaseous and particulate pollutant concentrations generally show a fairly good agreement with observations at the areas under study. Agrawal et al., 2009. Environmental Science and Technology 43, 5398-5402. Cesari et al., 2014. Science of the Total Environment 497-498, 392-400. Contini et al., 2015. Atmospheric Environment 102, 183-190. Viana et al., 2014. Atmospheric Environment 90, 96-105

    Comparison of the impact of ships to size- segregated particle concentrations in two harbour cities of northern Adriatic Sea

    No full text
    Detailed information on in-harbour shipping contribution to size segregated particles in coastal cities are scarce. In this work particle number and mass size distributions (size range 0.01-31 µm) were measured at high temporal resolution (1 minute) in two coastal cities of northern Adriatic Sea: Venice (Italy) and Rijeka (Croatia). Size distributions allowed focus in three size ranges: nanoparticles (diameter D1 µm). Absolute concentrations were larger in Venice for all size ranges. Daily trends of concentrations showed a large influence of local meteorology and boundary-layer dynamics in Venice and a contribution of road transport larger (in relative terms) in Rijeka. The contributions of shipping were significantly larger in Venice mainly because of the larger ship traffic. Maximum impact was on nanoparticles 7.4% (Venice) and 1.8% (Rijeka), the minimum was on fine range 1.9% (Venice) and <0.2% (Rijeka) and intermediate values were found in the coarse fraction 1.8% (Venice) and 0.5% (Rijeka). Contribution of shipping to mass concentration was not distinguishable from uncertainty in Rijeka (< 0.2% for PM1, PM2.5, and PM10) and was about 2% in Venice. Relative contributions as function of particles size show remarkable similitudes: a maximum for nanoparticles, a quick decrease and a successive secondary maximum (2-3 times lower than the first) in the fine range. For larger diameters, the relative contributions reach a minimum at 1-1.5 µm and there is a successive growth in the coarse range Size distribution showed a non negligible contribution of harbour emissions nanoparticle and fine particle number concentrations, compared to PM2.5 and PM10, indicating them as a better metric to monitor shipping impacts compared to mass concentrations (PM2.5 or PM10

    An inter-comparison of size segregated carbonaceous aerosol collected by low-volume impactor in the port-cities of Venice (Italy) and Rijeka (Croatia)

    No full text
    Size-segregated analysis of organic and elemental carbon (EC, OC) in aerosol is essential in understanding sources and effects on the environment. However, these studies are scarce, especially in coastal areas stressed by anthropogenic emissions and with interactions between anthropogenic and natural emissions. To partially fill this lack of information, aerosol size segregated samples were taken between August 2018 and May 2019, using a MOUDI impactor. Measurements were performed in two port-cities of Northern Adriatic Sea, Venice (Italy) and Rijeka (Croatia). A thermal-optical analysis (EUSAAR2) allowed EC and OC determination in different size ranges. For Rijeka site, the water soluble organic carbon content (WSOC) was analysed. OC and EC average concentrations in Venice were 3.16 (±0.97) and 0.40 (±0.13) μg/m3; in Rijeka: 2.48 (±0.65) and 0.37 (±0.08) μg/m3. The OC size distributions were bimodal at both sites, with an accumulation mode in the size range 0.56–0.32 μm, a coarse mode in the range 5.6–3.2 μm. EC showed a bimodal distribution in Rijeka, a single fine mode in Venice. The EC/TC ratio was large in the fine mode at both sites, however, in Rijeka non-negligible values were found in the coarse fraction suggesting contributions from resuspension of carbon-loaded dust and mixing of anthropogenic particles with sea spray. The WSOC/OC analysis as function of particle size in Rijeka showed a total value of 0.51 (±0.12) with an increase in the coarse fraction likely due to contributions of water soluble carbon from sea spray and biogenic emissions

    Bone marrow‐derived myeloid progenitors in the leptomeninges of adult mice

    No full text
    Although the bone marrow contains most hematopoietic activity during adulthood, hematopoietic stem and progenitor cells can be recovered from various extramedullary sites. Cells with hematopoietic progenitor properties have even been reported in the adult brain under steady‐state conditions, but their nature and localization remain insufficiently defined. Here, we describe a heterogeneous population of myeloid progenitors in the leptomeninges of adult C57BL/6 mice. This cell pool included common myeloid, granulocyte/macrophage, and megakaryocyte/erythrocyte progenitors. Accordingly, it gave rise to all major myelo‐erythroid lineages in clonogenic culture assays. Brain‐associated progenitors persisted after tissue perfusion and were partially inaccessible to intravenous antibodies, suggesting their localization behind continuous blood vessel endothelium such as the blood‐arachnoid barrier. Flt3Cre^{Cre} lineage tracing and bone marrow transplantation showed that the precursors were derived from adult hematopoietic stem cells and were most likely continuously replaced via cell trafficking. Importantly, their occurrence was tied to the immunologic state of the central nervous system (CNS) and was diminished in the context of neuroinflammation and ischemic stroke. Our findings confirm the presence of myeloid progenitors at the meningeal border of the brain and lay the foundation to unravel their possible functions in CNS surveillance and local immune cell production

    Atmospheric impact of ship traffic in four Adriatic-Ionian port-cities: Comparison and harmonization of different approaches

    No full text
    Shipping is a growing transport sector representing a relevant share of atmospheric pollutant emissions at global scale. In the Mediterranean Sea, shipping affects air quality of coastal urban areas with potential hazardous effects on both human health and climate. The high number of different approaches for investigating this aspect limits the comparability of results. Furthermore, limited information regarding the inter-annual trends of shipping impacts is available. In this work, an approach integrating emission inventory, numerical modelling (WRF-CAMx modelling system), and experimental measurements at high and low temporal resolution is used to investigate air quality shipping impact in the Adriatic/Ionian area focusing on four port-cities: Brindisi and Venice (Italy), Patras (Greece), and Rijeka (Croatia). Results showed shipping emissions of particulate matter (PM) and NOx comparable to road traffic emissions at all port-cities, with larger contributions to local SO2 emissions. Contributions to PM2.5 ranged between 0.5% (Rijeka) and 7.4% (Brindisi), those to PM10 were between 0.3% (Rijeka) and 5.8% (Brindisi). Contributions to particle number concentration (PNC) showed an impact 2-4 times larger with respect to that on mass concentrations. Shipping impact on gaseous pollutants are larger than those to PM. The contribution to total polycyclic aromatic hydrocarbon (PAHs) concentrations was 82% in Venice and 56% in Brindisi, with a different partition gas-particle because of different meteorological conditions. The inter-annual trends analysis showed the primary contribution to PM concentrations decreasing, due to the implementation of the European legislation on the use of low-sulphur content fuels. This effect was not present on other pollutants like PAHs. (C) 2016 Elsevier Ltd. All rights reserved
    corecore