8 research outputs found

    Variant Selection and Interpretation: An Example of Modified VarSome Classifier of ACMG Guidelines in the Diagnostic Setting

    No full text
    Variant interpretation is challenging as it involves combining different levels of evidence in order to evaluate the role of a specific variant in the context of a patient’s disease. Many in-depth refinements followed the original 2015 American College of Medical Genetics (ACMG) guidelines to overcome subjective interpretation of criteria and classification inconsistencies. Here, we developed an ACMG-based classifier that retrieves information for variant interpretation from the VarSome Stable-API environment and allows molecular geneticists involved in clinical reporting to introduce the necessary changes to criterion strength and to add or exclude criteria assigned automatically, ultimately leading to the final variant classification. We also developed a modified ACMG checklist to assist molecular geneticists in adjusting criterion strength and in adding literature-retrieved or patient-specific information, when available. The proposed classifier is an example of integration of automation and human expertise in variant curation, while maintaining the laboratory analytical workflow and the established bioinformatics pipeline

    Acetylcholine Receptor Pathway Mutations Explain Various Fetal Akinesia Deformation Sequence Disorders

    Get PDF
    Impaired fetal movement causes malformations, summarized as fetal akinesia deformation sequence (FADS), and is triggered by environmental and genetic factors. Acetylcholine receptor (AChR) components are suspects because mutations in the fetally expressed γ subunit (CHRNG) of AChR were found in two FADS disorders, lethal multiple pterygium syndrome (LMPS) and Escobar syndrome. Other AChR subunits α1, β1, and δ (CHRNA1, CHRNB1, CHRND) as well as receptor-associated protein of the synapse (RAPSN) previously revealed missense or compound nonsense-missense mutations in viable congenital myasthenic syndrome; lethality of homozygous null mutations was predicted but never shown. We provide the first report to our knowledge of homozygous nonsense mutations in CHRNA1 and CHRND and show that they were lethal, whereas novel recessive missense mutations in RAPSN caused a severe but not necessarily lethal phenotype. To elucidate disease-associated malformations such as frequent abortions, fetal edema, cystic hygroma, or cardiac defects, we studied Chrna1, Chrnb1, Chrnd, Chrng, and Rapsn in mouse embryos and found expression in skeletal muscles but also in early somite development. This indicates that early developmental defects might be due to somite expression in addition to solely muscle-specific effects. We conclude that complete or severe functional disruption of fetal AChR causes lethal multiple pterygium syndrome whereas milder alterations result in fetal hypokinesia with inborn contractures or a myasthenic syndrome later in life
    corecore