179 research outputs found

    Targeting Specific PDZ Domains of PSD-95 Structural Basis for Enhanced Affinity and Enzymatic Stability of a Cyclic Peptide

    Get PDF
    AbstractA cyclic peptide, Tyr-Lys-c[-Lys-Thr-Glu(βAla)-]-Val, incorporating a β-Ala lactam side chain linker and designed to target the PDZ domains of the postsynaptic density protein 95 (PSD-95), has been synthesized and structurally characterized by NMR while free and bound to the PDZ1 domain of PSD-95. While bound, the lactam linker of the peptide makes a number of unique contacts outside the canonical PDZ binding motif, providing a novel target for PDZ-domain specificity as well as producing a 10-fold enhancement in binding affinity. Additionally, the cyclization greatly enhances the enzymatic stability, increasing the duration that the peptide inhibits the association between PSD-95 and glutamate receptors, effectively inhibiting the clustering of kainate receptors for over 14 hr after application. Highly specific regulation of kainate receptor action may provide a novel route for treatment of drug addiction and epilepsy

    Family Resemblances? Ligand Binding and Activation of Family A and B G-Protein-Coupled Receptors Structural characterization of the parathyroid hormone receptor domains determinant for ligand binding

    Get PDF
    Abstract Over the years, the association of peptide ligands to Family B GPCRs (G-protein coupled receptors) has been characterized by a number of experimental and theoretical techniques. For the PTH (parathyroid hormone) ligand-receptor system, important insight has been provided by photoaffinity labelling experiments and the elucidation of direct contact points between ligand and receptor. Our research has focused on the structural elucidation of the receptor domains shown to be involved in the binding of PTH. Employing a combination of carefully designed receptor domains, solution-state NMR carried out in the presence of membrane mimetics and extensive computer simulations, we have obtained a well-resolved model of the ligandreceptor complex for PTH. Here, we review the development of this model and highlight some inherent limitations of the methods employed and their consequences on interpretation of the ligand-receptor model

    Evidence for a novel Kit adhesion domain mediating human mast cell adhesion to structural airway cells

    Get PDF
    Background: Human lung mast cells (HLMCs) infiltrate the airway epithelium and airway smooth muscle (ASM) in asthmatic airways. The mechanism of HLMC adhesion to both cell types is only partly defined, and adhesion is not inhibited by function-blocking anti-Kit and anti-stem cell factor (SCF) antibodies. Our aim was to identify adhesion molecules expressed by human mast cells that mediate adhesion to human ASM cells (HASMCs) and human airway epithelial cells. Methods: We used phage-display to isolate single chain Fv (scFv) antibodies with adhesion-blocking properties from rabbits immunised with HLMC and HMC-1 membrane proteins. Results: Post-immune rabbit serum labelled HLMCs in flow cytometry and inhibited their adhesion to human BEAS-2B epithelial cells. Mast cell-specific scFvs were identified which labelled mast cells but not Jurkat cells by flow cytometry. Of these, one scFv (A1) consistently inhibited mast cell adhesion to HASMCs and BEAS-2B epithelial cells by about 30 %. A1 immunoprecipitated Kit (CD117) from HMC-1 lysates and bound to a human Kit-expressing mouse mast cell line, but did not interfere with SCF-dependent Kit signalling. Conclusion: Kit contributes to human mast cell adhesion to human airway epithelial cells and HASMCs, but may utilise a previously unidentified adhesion domain that lies outside the SCF binding site. Targeting this adhesion pathway might offer a novel approach for the inhibition of mast cell interactions with structural airway cells, without detrimental effects on Kit signalling in other tissues

    The role of the tissue microenvironment in the regulation of cancer cell motility and invasion

    Get PDF
    During malignant neoplastic progression the cells undergo genetic and epigenetic cancer-specific alterations that finally lead to a loss of tissue homeostasis and restructuring of the microenvironment. The invasion of cancer cells through connective tissue is a crucial prerequisite for metastasis formation. Although cell invasion is foremost a mechanical process, cancer research has focused largely on gene regulation and signaling that underlie uncontrolled cell growth. More recently, the genes and signals involved in the invasion and transendothelial migration of cancer cells, such as the role of adhesion molecules and matrix degrading enzymes, have become the focus of research. In this review we discuss how the structural and biomechanical properties of extracellular matrix and surrounding cells such as endothelial cells influence cancer cell motility and invasion. We conclude that the microenvironment is a critical determinant of the migration strategy and the efficiency of cancer cell invasion

    Cancers of unknown primary origin: current perspectives and future therapeutic strategies

    Get PDF
    It is widely accepted that systemic neoplastic spread is a late event in tumour progression. However, sometimes, rapidly invasive cancers are diagnosed because of appearance of metastatic lesions in absence of a clearly detectable primary mass. This kind of disease is referred to as cancer of unknown primary (CUP) origin and accounts for 3-5% of all cancer diagnosis. There is poor consensus on the extent of diagnostic and pathologic evaluations required for these enigmatic cases which still lack effective treatment. Although technology to predict the primary tumour site of origin is improving rapidly, the key issue is concerning the biology which drives early occult metastatic spreading. This review provides the state of the art about clinical and therapeutic management of this malignant syndrome; main interest is addressed to the most recent improvements in CUP molecular biology and pathology, which will lead to successful tailored therapeutic options

    Small Molecule Inhibited Parathyroid Hormone Mediated cAMP Response by N–Terminal Peptide Binding

    Get PDF
    Ligand binding to certain classes of G protein coupled receptors (GPCRs) stimulates the rapid synthesis of cAMP through G protein. Human parathyroid hormone (PTH), a member of class B GPCRs, binds to its receptor via its N–terminal domain, thereby activating the pathway to this secondary messenger inside cells. Presently, GPCRs are the target of many pharmaceuticals however, these drugs target only a small fraction of structurally known GPCRs (about 10%). Coordination complexes are gaining interest due to their wide applications in the medicinal field. In the present studies we explored the potential of a coordination complex of Zn(II) and anthracenyl–terpyridine as a modulator of the parathyroid hormone response. Preferential interactions at the N–terminal domain of the peptide hormone were manifested by suppressed cAMP generation inside the cells. These observations contribute a regulatory component to the current GPCR–cAMP paradigm, where not the receptor itself, but the activating hormone is a target. To our knowledge, this is the first report about a coordination complex modulating GPCR activity at the level of deactivating its agonist. Developing such molecules might help in the control of pathogenic PTH function such as hyperparathyroidism, where control of excess hormonal activity is essentially required

    The effects of mutant Ras proteins on the cell signalome

    Get PDF
    The genetic alterations in cancer cells are tightly linked to signaling pathway dysregulation. Ras is a key molecule that controls several tumorigenesis-related processes, and mutations in RAS genes often lead to unbiased intensification of signaling networks that fuel cancer progression. In this article, we review recent studies that describe mutant Ras-regulated signaling routes and their cross-talk. In addition to the two main Ras-driven signaling pathways, i.e., the RAF/MEK/ERK and PI3K/AKT/mTOR pathways, we have also collected emerging data showing the importance of Ras in other signaling pathways, including the RAC/PAK, RalGDS/Ral, and PKC/PLC signaling pathways. Moreover, microRNA-regulated Ras-associated signaling pathways are also discussed to highlight the importance of Ras regulation in cancer. Finally, emerging data show that the signal alterations in specific cell types, such as cancer stem cells, could promote cancer development. Therefore, we also cover the up-to-date findings related to Ras-regulated signal transduction in cancer stem cells. © 2020, The Author(s)

    The interaction between caveolin-1 and Rho-GTPases promotes metastasis by controlling the expression of alpha5-integrin and the activation of Src, Ras and Erk

    Get PDF
    Proteins containing a caveolin-binding domain (CBD), such as the Rho-GTPases, can interact with caveolin-1 (Cav1) through its caveolin scaffold domain. Rho-GTPases are important regulators of p130Cas, which is crucial for both normal cell migration and Src kinase-mediated metastasis of cancer cells. However, although Rho-GTPases (particularly RhoC) and Cav1 have been linked to cancer progression and metastasis, the underlying molecular mechanisms are largely unknown. To investigate the function of Cav1–Rho-GTPase interaction in metastasis, we disrupted Cav1–Rho-GTPase binding in melanoma and mammary epithelial tumor cells by overexpressing CBD, and examined the loss-of-function of RhoC in metastatic cancer cells. Cancer cells overexpressing CBD or lacking RhoC had reduced p130Cas phosphorylation and Rac1 activation, resulting in an inhibition of migration and invasion in vitro. The activity of Src and the activation of its downstream targets FAK, Pyk2, Ras and extracellular signal-regulated kinase (Erk)1/2 were also impaired. A reduction in α5-integrin expression, which is required for binding to fibronectin and thus cell migration and survival, was observed in CBD-expressing cells and cells lacking RhoC. As a result of these defects, CBD-expressing melanoma cells had a reduced ability to metastasize in recipient mice, and impaired extravasation and survival in secondary sites in chicken embryos. Our data indicate that interaction between Cav1 and Rho-GTPases (most likely RhoC but not RhoA) promotes metastasis by stimulating α5-integrin expression and regulating the Src-dependent activation of p130Cas/Rac1, FAK/Pyk2 and Ras/Erk1/2 signaling cascades

    Cancer Cell Invasion Is Enhanced by Applied Mechanical Stimulation

    Get PDF
    Metastatic cells migrate from the site of the primary tumor, through the stroma, into the blood and lymphatic vessels, finally colonizing various other tissues to form secondary tumors. Numerous studies have been done to identify the stimuli that drive the metastatic cascade. This has led to the identification of multiple biochemical signals that promote metastasis. However, information on the role of mechanical factors in cancer metastasis has been limited to the affect of compliance. Interestingly, the tumor microenvironment is rich in many cell types including highly contractile cells that are responsible for extensive remodeling and production of the dense extracellular matrix surrounding the cancerous tissue. We hypothesize that the mechanical forces produced by remodeling activities of cells in the tumor microenvironment contribute to the invasion efficiency of metastatic cells. We have discovered a significant difference in the extent of invasion in mechanically stimulated verses non-stimulated cell culture environments. Furthermore, this mechanically enhanced invasion is dependent upon substrate protein composition, and influenced by topography. Finally, we have found that the protein cofilin is needed to sense the mechanical stimuli that enhances invasion. We conclude that other types of mechanical signals in the tumor microenvironment, besides the rigidity, can enhance the invasive abilities of cancer cells in vitro. We further propose that in vivo, non-cancerous cells located within the tumor micro-environment may be capable of providing the necessary mechanical stimulus during the remodeling of the extracellular matrix surrounding the tumor
    corecore