74 research outputs found

    PrImary decompressive Craniectomy in AneurySmal Subarachnoid hemOrrhage (PICASSO) trial: study protocol for a randomized controlled trial

    Get PDF
    BACKGROUND: Poor-grade aneurysmal subarachnoid hemorrhage (SAH) is associated with poor neurological outcome and high mortality. A major factor influencing morbidity and mortality is brain swelling in the acute phase. Decompressive craniectomy (DC) is currently used as an option in order to reduce intractably elevated intracranial pressure (ICP). However, execution and optimal timing of DC remain unclear. METHODS: PICASSO resembles a multicentric, prospective, 1:1 randomized standard treatment-controlled trial which analyzes whether primary DC (pDC) performed within 24 h combined with the best medical treatment in patients with poor-grade SAH reduces mortality and severe disability in comparison to best medical treatment alone and secondary craniectomy as ultima ratio therapy for elevated ICP. Consecutive patients presenting with poor-grade SAH, defined as grade 4–5 according to the World Federation of Neurosurgical Societies (WFNS), will be screened for eligibility. Two hundred sixteen patients will be randomized to receive either pDC additional to best medical treatment or best medical treatment alone. The primary outcome is the clinical outcome according to the modified Rankin Scale (mRS) at 12 months, which is dichotomized to favorable (mRS 0–4) and unfavorable (mRS 5–6). Secondary outcomes include morbidity and mortality, time to death, length of intensive care unit (ICU) stay and hospital stay, quality of life, rate of secondary DC due to intractably elevated ICP, effect of size of DC on outcome, use of duraplasty, and complications of DC. DISCUSSION: This multicenter trial aims to generate the first confirmatory data in a controlled randomized fashion that pDC improves the outcome in a clinically relevant endpoint in poor-grade SAH patients. TRIAL REGISTRATION: DRKS DRKS00017650. Registered on 09 June 2019. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13063-022-06969-4

    Diagnostic reliability of the Berlin classification for complex MCA aneurysms—usability in a series of only giant aneurysms

    Get PDF
    Background and objective The main challenge of bypass surgery of complex MCA aneurysms is not the selection of the bypass type but the initial decision-making of how to exclude the affected vessel segment from circulation. To this end, we have previously proposed a classification for complex MCA aneurysms based on the preoperative angiography. The current study aimed to validate this new classification and assess its diagnostic reliability using the giant aneurysm registry as an independent data set. Methods We reviewed the pretreatment neuroimaging of 51 patients with giant (> 2.5 cm) MCA aneurysms from 18 centers, prospectively entered into the international giant aneurysm registry. We classified the aneurysms according to our previously proposed Berlin classification for complex MCA aneurysms. To test for interrater diagnostic reliability, the data set was reviewed by four independent observers. Results We were able to classify all 51 aneurysms according to the Berlin classification for complex MCA aneurysms. Eight percent of the aneurysm were classified as type 1a, 14% as type 1b, 14% as type 2a, 24% as type 2b, 33% as type 2c, and 8% as type 3. The interrater reliability was moderate with Fleiss's Kappa of 0.419. Conclusion The recently published Berlin classification for complex MCA aneurysms showed diagnostic reliability, independent of the observer when applied to the MCA aneurysms of the international giant aneurysm registry.Peer reviewe

    Multi-dimensional modeling and simulation of semiconductor nanophotonic devices

    Get PDF
    Self-consistent modeling and multi-dimensional simulation of semiconductor nanophotonic devices is an important tool in the development of future integrated light sources and quantum devices. Simulations can guide important technological decisions by revealing performance bottlenecks in new device concepts, contribute to their understanding and help to theoretically explore their optimization potential. The efficient implementation of multi-dimensional numerical simulations for computer-aided design tasks requires sophisticated numerical methods and modeling techniques. We review recent advances in device-scale modeling of quantum dot based single-photon sources and laser diodes by self-consistently coupling the optical Maxwell equations with semiclassical carrier transport models using semi-classical and fully quantum mechanical descriptions of the optically active region, respectively. For the simulation of realistic devices with complex, multi-dimensional geometries, we have developed a novel hp-adaptive finite element approach for the optical Maxwell equations, using mixed meshes adapted to the multi-scale properties of the photonic structures. For electrically driven devices, we introduced novel discretization and parameter-embedding techniques to solve the drift-diffusion system for strongly degenerate semiconductors at cryogenic temperature. Our methodical advances are demonstrated on various applications, including vertical-cavity surface-emitting lasers, grating couplers and single-photon sources

    Teachers' Perception of Their Professional Growth and Development /

    No full text

    EnGeoMAP 2.0—Automated Hyperspectral Mineral Identification for the German EnMAP Space Mission

    No full text
    Algorithms for a rapid analysis of hyperspectral data are becoming more and more important with planned next generation spaceborne hyperspectral missions such as the Environmental Mapping and Analysis Program (EnMAP) and the Japanese Hyperspectral Imager Suite (HISUI), together with an ever growing pool of hyperspectral airborne data. The here presented EnGeoMAP 2.0 algorithm is an automated system for material characterization from imaging spectroscopy data, which builds on the theoretical framework of the Tetracorder and MICA (Material Identification and Characterization Algorithm) of the United States Geological Survey and of EnGeoMAP 1.0 from 2013. EnGeoMAP 2.0 includes automated absorption feature extraction, spatio-spectral gradient calculation and mineral anomaly detection. The usage of EnGeoMAP 2.0 is demonstrated at the mineral deposit sites of Rodalquilar (SE-Spain) and Haib River (S-Namibia) using HyMAP and simulated EnMAP data. Results from Hyperion data are presented as supplementary information
    • …
    corecore