208 research outputs found

    Isolation of fetal cells from maternal blood

    Get PDF

    Isolation of fetal cells from maternal blood

    Get PDF

    Combined exposure to parasite and pesticide causes increased mortality in the water flea Daphnia

    Get PDF
    Organisms are exposed to multiple biotic and abiotic environmental stressors, which can influence the dynamics of individual populations and communities. Populations may also genetically adapt to both natural (e.g. disease) and anthropogenic (e.g. chemical pollution) stress. In the present study, we studied fitness consequences of exposure to both a parasite (i.e. biotic) and a pesticide (i.e. abiotic) for the water flea Daphnia. In addition, we investigated whether these fitness consequences change through time as a population evolves. Thus, we exposed Daphnia magna clones, hatched from dormant eggs isolated from different time layers of a natural dormant egg bank, to the parasite Pasteuria ramosa and the insecticide diazinon in a multifactorial experiment. While our experimental treatments for unknown reasons failed to induce disease symptoms in the Daphnia, we did observe a reduced survival of D. magna when simultaneously exposed to both the parasite and the pesticide. No increased mortality upon exposure to individual stressors was observed. We did not observe an evolutionary change in fitness response of the Daphnia clones hatched from different time horizons upon exposure to stressor

    E1A expression dysregulates IL-8 production and suppresses IL-6 production by lung epithelial cells

    Get PDF
    BACKGROUND: The adenoviral protein E1A has been proposed to play a role in the pathophysiology of COPD, in particular by increasing IL-8 gene transcription of lung epithelial cells in response to cigarette smoke-constituents such as LPS. As IL-8 production is also under tight post-transcriptional control, we planned to study whether E1A affected IL-8 production post-transcriptionally. The production of IL-6 by E1A-positive cells had not been addressed and was studied in parallel. Based on our previous work into the regulation of IL-8 and IL-6 production in airway epithelial cells, we used the lung epithelial-like cell line NCI-H292 to generate stable transfectants expressing either E1A and/or E1B, which is known to frequently co-integrate with E1A. We analyzed IL-8 and IL-6 production and the underlying regulatory processes in response to LPS and TNF-α. METHODS: Stable transfectants were generated and characterized with immunohistochemistry, western blot and flow cytometry. IL-8 and IL-6 protein production was measured by ELISA. Levels of IL-8 and IL-6 mRNA were measured using specific radiolabeled probes. EMSA was used to assess transcriptional activation of relevant transcription factors. Post-transcriptional regulation of mRNA half-life was measured by Actinomycin D chase experiments. RESULTS: Most of the sixteen E1A-expressing transfectants showed suppression of IL-6 production, indicative of biologically active E1A. Significant but no uniform effects on IL-8 production, nor on transcriptional and post-transcriptional regulation of IL-8 production, were observed in the panel of E1A-expressing transfectants. E1B expression exerted similar effects as E1A on IL-8 production. CONCLUSION: Our results indicate that integration of adenoviral DNA and expression of E1A and E1B can either increase or decrease IL-8 production. Furthermore, we conclude that expression of E1A suppresses IL-6 production. These findings question the unique role of E1A protein in the pathophysiology of COPD, but do not exclude a role for adenoviral E1A/E1B DNA in modulating inflammatory responses nor in the pathogenesis of COPD

    Single nucleotide polymorphism discovery from expressed sequence tags in the waterflea Daphnia magna

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Daphnia </it>(Crustacea: Cladocera) plays a central role in standing aquatic ecosystems, has a well known ecology and is widely used in population studies and environmental risk assessments. <it>Daphnia magna </it>is, especially in Europe, intensively used to study stress responses of natural populations to pollutants, climate change, and antagonistic interactions with predators and parasites, which have all been demonstrated to induce micro-evolutionary and adaptive responses. Although its ecology and evolutionary biology is intensively studied, little is known on the functional genomics underpinning of phenotypic responses to environmental stressors. The aim of the present study was to find genes expressed in presence of environmental stressors, and target such genes for single nucleotide polymorphic (SNP) marker development.</p> <p>Results</p> <p>We developed three expressed sequence tag (EST) libraries using clonal lineages of <it>D. magna </it>exposed to ecological stressors, namely fish predation, parasite infection and pesticide exposure. We used these newly developed ESTs and other <it>Daphnia </it>ESTs retrieved from NCBI GeneBank to mine for SNP markers targeting synonymous as well as non synonymous genetic variation. We validate the developed SNPs in six natural populations of <it>D. magna </it>distributed at regional scale.</p> <p>Conclusions</p> <p>A large proportion (47%) of the produced ESTs are <it>Daphnia </it>lineage specific genes, which are potentially involved in responses to environmental stress rather than to general cellular functions and metabolic activities, or reflect the arthropod's aquatic lifestyle. The characterization of genes expressed under stress and the validation of their SNPs for population genetic study is important for identifying ecologically responsive genes in <it>D. magna</it>.</p
    corecore