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Preface 

Traditional approaches towards prenatal diagnosis of fetal abnormalities are ultrasonography 

and the invasive techniques of amniocentesis, chorionic villus sampling (CVS) and 

cordoccntesis. Although the invasive methods reach virtually 100 % accuracy, there is a 

small procedure-related risk for the felus. fetal loss rale following all invasive procedure is 

estimated at 0.5 - 1 %, depending on the technique employed. In the Netherlands, invasive 

prenatal testing is offered to women for various reasons: (1) advanced maternal age 

(~36 years); (2) a parental carrier status of a balanced chromosomal anomaly; (3) a previolls 

child wilh a chromosomal abnormality £IndIoI' multiple congenital malformations; 

(4) increased risk of a neural tube detect; (5) increased risk of a monogenic disease 

demonstrated by biochemical or DNA analysis; and (6) tetal congenital defects seen on 

ultrasound examination. 

During the last 15 years, high resolution ultrasound equipment has made possible the 

identification of a host of tetal congenital anomalies as c<uly as the early second trimester of 

pregnancy (\Vladimiroft~ 1994; den Hollander et al., 1998). Late first trimester and early 

second trimester sonographic markers for aneuploidy have been developed of which nuchal 

translucency has been shown to be the most effective onc (Pajkl1 e( a/., 1998: Snijders et al., 

1998). Biochcmical testing for chromosomc anomalies includes first trimester and early 

second trimester maternal serum screening (Wald eJ al., 1997; de Graaf, 1999; van Rijn, 

1999). Both sonographic markers and biochem ical tcsts represent a risk assessment with 

emphasis on Down syndrome. Depending on the nature of these tests, dctection rates of 

70-80 % fOJ' DOWI1 syndrome at a 5 % false positive rate have been claimed. Risk assessmcnt 

by means of maternal serulll screening andlor fetal nuchal transluccncy screening is currently 

subject to debate in the Netherlands (Discussion Oocur,lcnt Dutch Society of Obstetrics and 

Gynecology, 1997), 

An alternative non-invasive approach of potential diagnostic significancc is the isolation of 

fetal cells from maternal blood, whieh is receiving increasing attention during the last two 

decades, This may lead to the elimination of fetal cell sampling by invasive techniqucs sllch 

as CVS or [Hl1nioeentesis. To date, it is not yet clear whether the technique of fetal cell 

isolation from maternal blood will be accurate enough for fetal diagnosis. This thesis will 

give an overview of the current state of the ali offetal cell isolation. 
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Gcneral introduction 

Feto-maternal cell traffic in pathological conditions was tirst recognized in 1893, when 

Schmorl idcntified trophoblast cells in lung capillaries of women dying of eclampsia 

(Schmorl, 1893). In 1969, \Valknowska ef a/. identified male meta phases in cultured 

lymphocytes isolated from blood of healthy pregnant women, who subsequently gave bil1h to 

a boy. They were thc first to demonstrate that fetal cells enter the matel1lal circulation in 

normal pregnancy and they suggested that these cells might be llsed for chromosome 

analysis. Since then, many investigators have focussed on the development of a safe and 

reliable test to perform non-invasive prenatal diagnosis, as an alternative for chorionic villus 

sampling and amniocentesis. Before a non-invasive prenatal diagnostic test using fetal cells 

in maternal blood will be available, a Humber of questions need to be addressed, such as: 

(1) at what period of gestation does feto-matcrnal transfer of cells take place; (2) what is the 

best fetal cell type to isolate; (3) arc fetal cells detectablc in thc ~Iood orall pregnant women; 

(4) do chromosomally abnormal pregnancies result in increased or decreased transfer of fetal 

cells into the maternal circulation; and (5) may fetal cells from prior pregnancies persist in 

the maternal circulation, and hence interfere with a reliable prenatal diagnosis. 

1.1. Biological basis of passage of fetal cells into the maternal circulation 

Passage of fetal cells into the maternal circulation will occur at the feto-maternal interface. 

Knowledge of embl)'onic development and the fonnation of the feto-maternal interface 

(placentation) will gain insight into the process of feto-maternal cell trafficking. Furthcrl11ore~ 

knowledge of fetal hematopoiesis will lead to more information about the fetal cell types that 

circulate in maternal blood during pregnancy. 

1.1.1. Embryonic development and placentation 

After fertilization of an oocyte by a sperm cell, the formed zygote undergoes a series of rapid 

mitotic cell divisions known as cleavage. The zygote is cleaved into a number of blastomeres 

and subsequent cell divisions of these blastomcrcs result in the formation of the morula 

(32-cell stage; day 3). Subsequently~ the morula develops into the blastocyst (64-cell stage: 

day 4-5) which contains an outer cell layer (trophoblast) which gives rise to p1ll1 of the 

placenta, and a group of centrally located cells, the inner cell mass (embryoblast) which gives 

rise to the embl)'o. After the blastocyst has attached to the endometrial epithelium (day 6), 

the trophoblast ditferentiates into two eelJ types: (1) the cytotrophoblast, which is mitotically 

active and forms new cells that migrate into the increasing mass of syncytiotrophoblast; and 

(2) the syncytiotrophoblast. The latter rapidly becomes a large, thick, multinucleated 
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protoplasmic Illass in which no cell boundaries are distinguishable (syncytium). 

Subsequcntly, a lacunar network develops in thc syncytiotrophoblast, and maternal capillaries 

near the syncytiotrophoblast expand to form maternal sinusoids establishing a primitive 

uteroplaccntal circulation, in which the primm)' chorionic villi develop (day 13). In the 

fmiher maturation of the villous tree, fetal blood vessels invadc this villolls connectivc tissue 

and connect the vessels to the cmbl),onic circulation. \Vhcn the fetal hemi begins contracting 

on day 2201' 23, a primitive fetal placcntal circulation establishes (Moore, 1982). 

One of the imp01iant placental structures t hat assures the transfer of nutrients to enhance fetal 

growth is the so-called 'placenta membrane', a thin layer of fetal tissues scparating the 

matelllal and fetal circulation. This membrane consists of syncytiotrophoblast, 

cytotrophoblast, thc connective tissue core of the villus, and the endothelium of the fetal 

capillaries. As pregnancy advances, the placental membrane bccomes progressively thinner 

while simultaneollsly fetal blood tlow and blood pressure increase as the villous tree cnlarges 

(Sullon ('{ (/1., 1990). 

Until now, it is not known at what period during placentation a feto-matcrnaltransfusion may 

OCClll". One can readily imagine that a disruption of the relatively thin placental membrane 

would lead to fetal bleeding into the intervillous space at the timc when this membranc thins 

with advancing pregnancy. Another theoretical possibility may be that feto-maternal cell 

trafficking takes place during the formation of villi, at the time when fetal capillaries are 

formed and the pumping action of the fetal heart begins (Benirschke, 1994). 

1.1.2. Hematopoiesis 

Fetal hematopoiesis is one of the first processes established following implantation of the 

blastocyst, and can be divided into three main overlapping periods: mesoblastic, hepatic, and 

myeloid (tigure 1). It was originally assumed that the mesoblastic hematopoiesis stmis in the 

yolk sac between days 16 and 19 (Huyhn el al., 1995), followed by hepatic hematopoiesis at 

approximately 5 wccks aner fertilization (Migliaccio el al., 1986). The final phase of 

hematopoiesis takes place in the bone marrow, starting at 10 wceks atter fertilization in the 

long bones (Metcalf and Moore, 1971; Kollmann el al., 1994; Charbord ('I (/1 .. 1996). 

Recently, it has been showll that in developing mamnwis stem cells can be derived from an 

intraembryonic site called the amta~gol1ad-lllesonephros (AGM) region Uvledvinsky ef a/., 

1993: Medvinsky and Dzierzak, 1996; Tavian el u/., 1996). Howevcr, the site of origin of 

definitive hematopoietic stem cells in the developing fetus remains controversial. Evidence 

n'om some studies indicates that hematopoietic stem cells from the yolk sac arc responsible 

for transient primitive hematopoiesis, but they appear to lack the ability to reconstitute the 

hematopoietic system in adult animals (Cumano cl al., 1996; Medvinsky and Dzierzak, 
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General introduclion 

1996). Instead, stem cells derived from the AGM region have been shown, both in mice and 

man (Tavian et al., 1996), to be responsible tor definitive hematopoiesis (Godin ct al., 1993; 

Medvinskyet al., 1993; Medvinskyand Dzierzak, 1996) by first colonizing the fetal liver and 

latcl' the bone marrow (Delasslls and Cumano, 1996). On the other hand, evidence from other 

studies suggests that hematopoietic stem cells with the capacity to contribute to definitive 

hematopoiesis are present both in the yolk sac and in the AGM region of murine embtyos 

prior to fctallivcr colonization (Yoder et al., 1997n, b). 

Liver ............ 

'. 

o 2 3 4 5 6 7 8 9 10 

Months 

Figure 1 Hematopoiesis in the fetus (after Kelemen el al., 1979) 

Hematopoiesis in the yolk saC is distinct from that of fetal liver and adult marrow 

hematopoiesis in that it nppears to be restricted to the generation of two lineages: embryonic 

erythrocytes, whit.:h represent the major hematopoietic component of the blood islands in the 

yolk sac, and macrophagcs that are dispersed throughout the yolk sac (Metcalf and rvloore, 

1971; Russell, 1979). These early el)1hroid cells, known as primitive erythrocytes, arc large 

and remain nucleated. These primitive el)1hroid cells predominantly express the c-glohin and 

S-globin genes (the embryonic forms of hemoglobin) and low levels of (1.- and p-globin genes 

(Barker, 1968; Brotherton et al., '1979; Russell, 1979). The transition from yolk sac to fetal 

liver defines the switch from primitive to definitive hematopoiesis and the replacement of the 

primitive el)1hroid cells by multilineagc hematopoiesis including definitive el)1hropoiesis, 

myelopoiesis, and lymphopoiesis (Metcalf and Moore, 1971). Detlnitive el)1hroid cclls 

generated in the fetal liver differ from primitive cl)1hroc)1es in the yolk sac in that they arc 

small and that they enucleate. This coincides with a switch frol11 c- to y-globin gene 

expression and from S- to a-globin gene expression (Peschle el af., 1985). During the fetal 
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period, the site of el)1hropoiesis gradually switches from the liver to the spleen and finaily 

the bone marrow. Gamma-globin gene expression decreases during this period with a 

reciprocal increase in the expression of the adult p-globin gene and the appearance of low 

levels ofadull ii-globin gene expression (tigure 2) (Barker, 1968; BrothClton of a/., 1979). 

o 

Figure 2 

y 

3 6 9 12 t5 
months 

Expression of globins during fetal development (after Barker, 1968; 
Brotherton <'I al., 1979; Peschle ('I al., J 985) 

\Vith the development of cordocentesis, access to the fetal circulation has provided an 

opportunity to study fetal hematological profiles. However, it is technically difficult to obtain 

Ictal blood before 18-20 weeks of gestation. In the developing fetus, the number of 

erythroc)1es increases linearly, whereas the number of el)1hroblast cells decreases with 

advancing gestation. In contrast, the number of fetal white blood cells increases with 

gestation (table 1) (Millar of a/., 1985; De Waele ef a/., 1988; Nicolaides ef a/., 1989; 

Forestier ef a/., 1991; Thilaganathan of 0/., 1992, 1994). 

For the development of a non-invasive prenatal diagnostic test, fetal el)1hroblast cells appear 

to be the lelal cell type to target, since these cells are the first cells that are formed during 

fctal hematopoiesis in the yolk sac. In addition, erythroblast cells are abundantly present in 

the fetus during the first trimester of pregnancy, when compared with lymphoid and myeloid 

cells. 
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Table 1 rvfenn values for the number of white blood cells, red blood cells !lnd erythroblast 
cells in fClal, neonatal and adult blood 

Gestational age 

16-17 weeks 

18-21 weeks 

22 - 25 weeks 

26 - 29 weeks 

neonate 

adult 

White blood cells 

(xl0'/I) 

2.00 

2.98 

4.51 

5.16 

14.1 

6.00 

Red blood cells EI)1hroblast cells 

(x I 0"/1) (x I 0'/1) 

2.62 2.70 

2.82 1.75 

3.00 0.95 

3.46 0.99 

4.60 0.50 

4.70 <0.01 

Dala arc lIdapkd from t>.lilIar eI al., 1985; Dc Wnelc {'I al., 1988; Foresticr ('/ 01., 1991. 

1.2. Fetal cell types 

The next issue conccrns the types of fetal cells that have been found in the maternal 

circulation. The fetal cell types that have been studied by numerous investigators worldwide 

include fetal leukocytes, i.e. fctal lymphocytes and gr<lnuloc)1es, fetal nucleated red blood 

cells (NRBCs) and trophoblast cells. 

1.2.1. Fetal leukocytes 

L}'f11p/tocyles 

The presence of fetal lymphoc)1es in the maternal circulation was first described in 1969 by 

\Valknowska et a/ .. These investigators demonstrated the presence of a Y chromosome in 

mitogen-stimulated lymphoc)1es obtained from pregnant women c1llTying a male fetlls. These 

results were confirmed by others using similar techniques or by investigating 

quinacrine-stained interphase nuclei for the presence of fluorescent Y chrolllosome signals 

(Schindler and Martin-du-Pan. 1972; Schroder alld de la Chapellc, 1972). 

Another breakthrough was the isolation of fetal lymphocytes by tluorescence-<lctivated cell 

sorting (FACS) lIsing a monoclonal antibody against the human leukocyte antigen HLA-A2, 

which was only expressed on fetal lymphocytes and not on maternal cells (Hcrzenberg ct a/., 

1979; Iverson ct al., 1981). Unfortunately, until now the isolation of fetal lymphocytes is 

considered impractical due to the necessity ofpcrforming HLA typing of both parents and the 

lack of other specific markers ,that distinguish fetal from maternal lymphoc)1es. !'vloreover, 

17 



Chapter 1 

the fact that fetal lymphocytes might persist from an earlier pregnancy makes it difficult to 

establish whether isolated lymphoc)1es derive from the current pregnancy (Schroder el al., 

1974). This is especially problematic for the detection or trisomic cells in women with prior 

spontaneolls abortions, given the high likelihood (50%) thal these abortions were associated 

with a chromosomally abnormal fetus (Sargent et (fl., 1994). 

Fetal gruuulocytes 

This fetal cell type has received little .1ttention. In 1975, Zilliaclls el ai, detected fetal 

granulocytes in the circulation of pregnant women. Several years later, \Vessman ef al. (1992) 

isolated granuioc)1es from maternal peripheral blood samples lIsing density gradient 

centrifugation and they corrcctly identified the Y chromosomc in these granulocytes by ill 

situ hybridization. 

1.2.2. Trophoblast cells 

Trophoblast cells are pm1icularly attractive for the development of a non-invasive prenatal 

test because of their unique morphology, which permits microscopic identification. 

Goodtellow and Taylor (1982) were the first to demonstrate trophoblast cells in peripheral 

blood samples fi'olll pregnant women lIsing differential centrifugation and indirect 

immunofluorescence detection. Covone el al. (l984) identified feta I trophoblast cells in the 

peripheral blood from pregnant women using FACS and a monoclonal antibody against a 

syncytiotrophoblast-specific antigen, H315. However, subsequent work showed that thc 

H315-positive cells were of maternal origin (Covone ef al., J988). 1t was suggested that the 

results were due to adsorption of the H315 onto maternal cells and no fetal cells had been 

isolated either in this study or the previous study. These problcms may be overcome by the 

use of new markers, snch as HASH-2, human placental lactogcn hormone (hPL) (Latham ef 

al., 1996) or HLA-G (Moreau el al., 1994; vall Wijk el al., 1996). 

Another difficulty is the fact that trophoblast cells appear to be rarc in the maternal 

circulation, probably because they are able to form large multi-nucleated giant cells which are 

filtered out by the maternal pulmonmy circulation so that they do not reach the peripheral 

circulation (Attwood and Park, 1960). Especially, when the prcgnancy develops normally, 

trophoblast cells do not appear to be present in grcat numbers in maternal peripheral blood 

(Sargent ef al., 1994). However, trophoblast cells arc detectable in increased numbers in 

cascs of preeclampsia, although it is not yet known whether these increased numbers arc a 

calise or an effect of preeclampsia (Chua el al., 1991; Sargent et al., 1994). 

A further concern using trophoblast cells is the fact that they are part of the placenta and 

potential problems may arise when chromosome abnormalities arc prcscnt in the placenta but 
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not in the letus (Henderson el 01., 1996; Goldberg and \Vohlferd, 1997; van Opstal, 1998). 

This confincd placental mosaicism has been documented to occlir in 1 % of all cases of 

chorionic villus sampling. Therefore, genetic analysis of a placental trophoblast cell might 

not be representative of the fetal kmyotypc. 

1.2.3. Fetal nucleated red blood cells 

The last H:w years, most attention has been focussed on the isolation of fetal NRBCs from 

maternal blood. Fetal NRBCs are the prcdomimlllt nucleated cell type in the fetal circulation 

in the first trimester of pregnancy, during the yolk sac and liver phases of hematopoiesis 

(Metcalf and Moore, 1971). In blood of 10- to 20-week fetuses, NRBCs make up 

approximately 10 % oflhe total popUlation, whereas in adults they are quite rare «0.1 %). In 

addition, red cell development in the fetlls is morc advanced than white cell development 

during the tirst trimester (see paragraph 1.1.2., table I). If fetal cell trafficking occurs, they 

are likely to be the major cell type in the maternal circulation. 

NRBCs have been isolated llsing antibodies against membrane-bound markers like the 

transferrin reccptor (CD7I) and glycophorin A (GPA) or intracellular antigens like fetal and 

embl),onie hemoglobin (Lokcn el al., 1987; Bianchi e/ al., 1990; Zheng el 01.,1995; Mesker 

el al., 1998) (see paragraph 1.3.1.). 

Another reason why the isolation of fetal NRBCs is attractive is that fetal NRBCs have a 

limited life span of about 120 days (Pearson, 1967), and are therefore unlikely to persist 

between pregnancies, unlike fetal lymphocytes (Simpson and Elias, 1994). 

1.3. Isolation and identification strategies for fetal cells in maternal blood 

1.3.1. Isolation strategies 

The number of fetal cells in the maternal circulation is limited, and therefore, 1110st efforts 

have been concentrated all the development of a highly efficient enrichment procedure. 

Enrichment call be achieved by either positive selection of target cells using uniquc fetal 

characteristics, or by depletion of contaminating maternal cells. for the isolation of rare cell 

populations two considerations should be taken into account: yield and purity. Yield is very 

impoliant because the number of fetal cells in maternal blood is vcry low and loss of fetal 

cells should be avoided. Purity will be determined by the relative number of fetal and 

maternal cells remaining after enrichment. A relative increase in the absolute number of fetal 

cells after enrichment allows the reduction of the amount of maternal background cells, and 
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thereby, fetal cell idcntificntion by nuorescencc il1 sill1 hybdtii:latioll (FISH) or polymerase 

chain reaction (peR) analysis is facilitated. 

To distinguish ictal cells from the vast majority of their maternal cOlintcll}[lrts a specific 

marker is needed. Until now, no single marker antigen is known that is specific tor fetal cells. 

An overview of isolation approaches that have been designed to recover fctal cells lI'olll the 

maternal circulation is given in tublc 2. 

Table 2 Isolation strategies used for the isolation of fetal cells from the maternal circulation 

-cls~o~la~';~o~n~s~',~a'~,~gLy __________ F~,~ta~I~,c~ILI~')~'p~e ______ ~R~c~~~r~cl~lc~,~s ______________________ . ______ ___ 

Fluorescence activated cell 
sorting (FACS) 

Magnetic activated cell 
sorting (~'IACS) 

Charge now separation 
(CFS) 

Densit)' gradient 
centrifugation 

ImIllunomngnctic bends 
separation 

Illlmunomagnetic colloid 
system 

lymphocytes 
NRBCs 
trophoblast cells 

NRBCs 
trophoblast cells 

NRl3Cs 

lymphocytes 
granulocytes 
trophoblast cells 
NRDCs 

NRI1Cs 
trophoblast cells 

NRBCs 
trophohlast cells 

Avidin-conjugated columns NRBCs 
wilh biotinylated antibodies 

i\licromElnipuiation of NRBCs 
individual cells 

Carbonic anhydrase NRBCs 
inhibition 

Fluorescence actiwtfed cell sorting (FACS,) 

HerLcnbcrg c/ aI., 1979; Iverson e( af., 1981; Bianchi ('I 
al., 1990; Price ('/ a/., 1991; Wachtel el (1/,,1991; Tse 
d al., 1994; Johansen ('( al., 1995; Lewis el 01.,1996; 
Sollda ('I al., 1997 

Ganshil1-Ahlert et al., 1992, 1993; Zheng ellll., 1993; 
Busch e! al., 1994; Durrant ('Ial., 1996; Ganshirt ('I III., 
1998 

Wachtel ('( al., 1996, 1998; Shulman ('( al., 1998 

Bh<lt ct al .. 1993; Ooslt'rwijk Cf a/., 1996; Sitar dill" 
1997; Ganshirt ('( al" 1998; Sekiz(l\\-a ct af., 1999 

WCSSIllOIl ('I af., 1992; Johmls~n ('/ af., 1995; Bianchi c/ 
al., 1996b 

Steele d al., 1996; i\'tartin cl al., 1997; Lim c/ al., 1999 

lIall e/ al., 1994 

Takabayashi ct al., 1995; Sckizawa ('/ al., 1996a, b, 
1998; Watonabe ('I al., 1998 

de Uraafct al., 19990 

FACS or tlowcytometry is used for positive selection of target cells as well as for depletion 

of contaminating maternal cells (Herzenberg el al., 1979; Iverson et al., 1981; Bianchi el al., 

1990; Price el a/., 1991; Woehlel el al., 1991; Tse el al., 1994; .Iolml1sel1 el al., 1995; Lewis 

elal., 1996; Sohda et al., 1997). The sample for s0l1ing is incubated with a tluorescent-
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labeled !lntibody specific for the target cell. The FACSc<ln identifies the cells labeled with the 

tllltibody which arc thell collected into a tube or onto a slide for furthcr analysis, Although it 

is possible to achieve a high purity of target cells making microscopic analysis easier and 

more accurate, this method of fetal cell isolation requires considerable operator expcliisc, is 

time-consuming and the expense of the equipmcnt also limits its application on a wide scale. 

Afagnetic ((ctim/ed cell sorting (XfACS) 

MACS is the most widely uscd method of fetal cell isolation and can be used for positivc 

selection of fetal cells as well as depletion of maternal cells (Ganshirt-Ahlert e/ al., 1992, 

1993; Zhcng ef (II., 1993; Busch ef al., 1994; D'lll'ant ef (II., 1996; Ganshirt ef al., 1998). 

Tmget cells are labeled with an antibody attached to magnetic beads, The cell suspension is 

passed over a separation column with a magnetizable matrix that is placed into a magnetic 

field of extreme strength. Unlabeled cells flow through the matrix, and labeled cells stick to 

the column and can be eluted after being taken away from the magnetic field, MACS 

isolation is less expensive and time-consuming than FACS, and requires less expertise to 

perform, The major disadvantage of MACS is that target cells are contaminated hy maternal 

celis, resulting in low purity, and hence, complicating fetal cell identification. 

Charge .110\1' separation (ep.); 

Charge !low separation, an alternative approach for fetal cell enrichment reqUlnng no 

antibody for cell selection has recently bcen described (\Vachtcl ef aI" 1996, 1998; Shulman 

e/ aI" 1998), The method is based on the migration of cells in an electric field. It permits 

differentiation of cell types according to their characteristic surface charge dcnsities lIsing a 

cross-flow fluid gradient without the need of an antibody. This technology results in a 

signil1cantly higher recovel)' of NRBCs than observed by other groups using conventional 

methods for fetal cell isolation, like FACS and MACS. However, it is presently unclear as to 

whether all NRBCs isolateu by this technique arc offetal origin. 

Antibodies used/or the i.mlation (?!/etal NRBCsji"r)J1111lalernal blood 

A variely of monoclonal antibodies have been used for the isolation of fetal NR13Cs from 

maternal blood samples. The majority of researchers have utilized a 1110noclonal antibody to 

the transferrin receptor (COli) for the isolation of fetal NRBCs (Bianchi et al., 1990; 

Ganshil1-Ahlcli ef al., 1992; Lewis ef al., 1996; Sohda ef al., 1997). CD71 is expressed on all 

cells actively incorporating iron, and 011 nearly all first-trimestcr fetal nucleated blood cells 

(Price ef al., 1991; Wachtel ef a/., 1991; Bianchi ef al., 1992; Ganshili-Ahleli ef al., 1992; 

Durrant e/ al., 1994; Zhcng et aI" 1997). Its expression declines with gestational age but is 

increased in fctuses with an abnormal karyotype (Thilaganathan et aI" 1995; Zheng et aI" 

1999). The disadvantage of C071 is that it is also expressed 011 a sUbpopulation of maternal 
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cells, such as activated lymphocytes, which results in low purity (Bianchi et al., 1994; Zheng 

e!al., 1997). 

Monoclonal antibodies against GPA, present all maturing clythrocyles but not on 

lymphocytes, have been used in combination with anti-CD?I in an altempt to increase the 

specificity of recovery (Price el al., 1991). Unfortunately, anti-GPA causes agglutination of 

the target red cells, preventing efficient sorting (Simpson et al., 1995). 

Other monoclonal antibodies used for fetal NRBCs isolation are those that recognize the 

embryonic (HbE) and lelal (HbF) hcmoglobin (Zheng ef al., 1993, 1995; Reading e! al., 

1995; Cheung el 0/., 1996; Demaria et al., 1996; Lewis el al., 1996; Oosterwijk et al., 1996, 

1998b, c; Mesker ef al., 1998). HbE ("II;-chain), although unique 10 fclal cells, is expressed 

only during a narrow window of time during gestation and ceases during the first trimester of 

pregnancy (Zheng el al., 1999). HbF (y~chaill) is expressed in most fetal cells over a wide 

range of gestational ages. Unf0l1unately, HbF is not fetal-specific since about 1% of adult 

erythroid cells also contain HbF (Turpcincn and Stellman, 1992). Moreover, increased 

cl)'thropoiesis during pregnancy will stimulate the synthesis of fetal hemoglobin in the 

female adult, thereby limiting the usefulness of the HbF antibody (Pembrey et al., 1973; 

Siunga-Tallberg ef al., 1995). 

Additional monoclonal antibodies used for the isolation of fetal NRBCs are presented in 

lable3. 

1.3.2. Identification of fetal celis in maternal blood 

Genetic analysis of fetal cells in maternal blood has relied primarily 011 two techniques: FISH 

using chromosome-specific probes and peR to amplify unique fetal gene sequences enabling 

subsequent DNA analysis of gene mutations. 

Fluorescence in situ hybridization 

The major fetal cell conditions associated with an abnormality in chromosome Ilumber can be 

easily detected by FISH. Since sorted samples arc in interphase, cOllnting the chromosomcs 

by direct visualization is impossible using standard c)1ogcnctic methods. FISH offers this 

possibility by using chromosome-specific labeled probes, which bind to regions of the target 

chromosome. Betore FISH can be applied tor fetal cell identitication, cnrichment of fetal 

cells is necessary to avoid fetal signals being overruled by signals from maternal cells and to 

decrease thc time of microscopic examination to analyse a sufticicnt number of fetal cells. In 

cases of low purity. identification of fetal cells can be improved through bettcr and faster 
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Tabid Cell markers used lor the enrichment of fetal NRBCs and depletion of maternal cells 

Cell marker Expressed 011 

CD7] (transferrin receptor) erythroid cells 
activatcd lymphocytes 

(iPA (glycophorin A) erythroid cells 

HbElHbF erythroid cells 
(embryonic/fetal hemoglobin) 

Blood group antigcns erythroid cells 

Erythropoietin receptor el)1hroid cells 

CD36 (thrombospondin monoeytes 
receptor) platelets 

cl)1hroid cells 

HAE9, FBJ-2, 2-68/6, 113-3 erythroid cells 
(fetlllliver surface antigens) 

CD45 leukoc)1es 

CD32 granu1OC)1CS 

CDI4 monocytes 

Used tor 

enrichmcnt 

cllriehment 

enrichmcnt 

enrichmcnt 

enrichment 

enrichment 

enrichment 

depletion 

depletion 

dcplction 

References 

Bianchi {'( al., 1990; Ganshirt­
Ahler! et al., 1992; Lewis e/ (/1., 
1996; Sohda c/ al., 1997; Ganshirt 
e/ (/1., ]998 

Pric-c d al., 1991; Wachtel ,,/ al.. 
1991; Simpson e/ al., 1995; Lewis 
el (It., 1996 

Zhcng e/ al., 1993, 1995; Reading 
e/ al., 1995; Cheung ,,/ (/1., 1996; 
Demaria t'/ al., 1996; Lewis ('I al., 
1996; Oosterwijk el al., 1996, 
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SavioTl d al., 1997; Troeger cl al .. 
1999 

Valeriocfal., 1996, 1997a,b 

Bianchi ('f al., 1993; Troeger "f (//., 
1999 

Savion c/ al., 1997; Zheng ('/ al., 
1997, 1999; Troeger ef al., 1999 
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Lim.elal., 1999 
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recognition of fetal cells through automated scanning (Oosterwijk el al., 1996, 1998a; Tanke 

et al., 1996; de Graaf ct al., 1999a). By combining FISH and immunocytochemical staining 

for HbF, fetal cells can be identified by automated image analysis consisting of computerized 

microscopy, combining bright Held and fluorescence microscopy, and subsequent visual 

evaluation of image memories. Automated image analysis appeared to be more sensitive than 

manual identification of fetal cells (Oosterwijk ct al., 1998a). 

It has now been possible to detect almost all of the significant fetal aneuploidies using fetal 

cells isolated from maternal blood (Price et al., 1991; Bianchi el al., 1992; Cacheux el al., 
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1992; Elias el al., 1992; Ganshil1-Ahlcrt el al., 1993; Simpson and Elias, 1993; Zheng el al., 

1995; Pezzolo el al., 1997; Oostelwijk el al., 1998d; AI-Mufti el a/., 1999; de Graaf el al., 

1999b; Rodriguez de Alba ef al., 1999). These comprise all of the major autosomal trisomies 

including trisomy 13, trisomy 18, trisomy 21, some of the sex chromosome abnormalities like 

47, XXV and 47, XYY, and triploidy. Recent technical advances in FISH analysis of fetal 

cells include the capability to oeteet aneuploidies using multicolor FISH (Bischoff et al., 

1998) and repeated hybridization of cells that permit analysis of all chromosome pairs 

(poly-FISH) (Zhen el al., 1998). Poly-FISH is a technique of sequential FISH analysis that 

involves removal of the previolls hybridized probe and rehybridization with different probes 

to improve FISH efficiency. This technique t:1cilitates the analysis of multiple 

chromosome-specific probes on the Silme nuclei) and thereby) permits analysis of all 

chromosome pairs. 

Interestingly) fetal NRBCs isolated from maternal blood may be more representative of the 

fetal karyotype than chorionic villi obtained through the traditional invasive technique. In a 

case repOli, Bischoff el al. (1995) identified a 46, XY/47, XXV mosaicism in fetal cells 

tlow-sorted from maternal blood. In cultured chorionic villi obtained from the same WOIlUHl) 

only four 47, XXV nuclei were ideillilied out of 500 nuclei analyzed. 

Po~wnerase elwin reaction 

The development of PCR (Saiki et al., 1985, 1988) provides a sensitive method for DNA 

analysis of fetal gene sequences in maternal peripheral blood silmples. peR has been 

successfully applied for the detection of rarc eells such as in cases of minimal residual 

disease in cancer by picking up few malignant eells expressing a genetic markcr susceptible 

of amplification among a large multitude of negative normal cells (Lee el al., 1987, 1989; van 

Dongen et al., 1998). The presence of fetal cells in maternal blood can be investigated by a 

similar approach provided that a suitable genetic marker is available in the fetus and absent in 

the Illothel\ i.e. the Y chromosome and paternally inherited markers. 

Lo et al. (1989) were the first to identify the Y chromosome in the pcripheral blood of 

pregnant women lIsing nested peR for a Y chromosome-specific sequence. They correctly 

identified fetal sex on all 19 cases tested, of which 12 women were calTying a male fetus and 

7 women a female fetus. Thereafter, several groups identil1ed the existence of fetal cells in 

maternal blood by nested PCR analysis (Bianchi el ill., 1990; Lo "I al., 1990, 1993; Kao "I 

al., 1992; Suzumori et al., 1992; Adkison el al.) 1994). However, almost all groups repOlied 

false-positive as well as false-negative results. The main drawback of nested PCR is its 

susceptibility to exogenous contamination necessitating 1110re stringent precautions during the 

tcchnical process to minimize false-positive results. On the other hand, tblse-positive results 

may be ohtained after cross-reactivity with maternal scqllcnces or residual fetal cells from 

previolls conceptuses (see paragraph 1.5.3.). False-negative results can be explained by 
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absence of fetal cells in the maternal circulation or by removal of fetal cells by the matenml 

immune system due to feto-maternal blood group incompatibility. Alternatively, 

false-negative results could simply retleet technical failure because the number of fetal cells 

was below the limit of sensitivity to detect fetal DNA. 

Other uniquely fetal gene sequences that have been detected by peR include variolls 

mutations in bcta globin genes, such as hemoglobin Boston-Lcpore (Camasehella el al., 

1990) or mutations associated with p-thalasscmia (Hawes et al., 1994),lhe HLA-DR and DQ 

alpha genes (Yeoh et (.d., 1991; Geifman-Holtzman et al., 1995), and Rheslls D and Rhesus C 

(Lo e/ al., 1994b; Geilinan-Holtzman e/ al., 1996, 1998; TOtll e/ ,iI., 1998). 

Micromanipulation ([11(/ single cell peR 

Using peR for amplification of fetal sequences that arc contaminated with maternal cells, 

only sex determination and paternally derived disease marker analysis are feasible. In 

approximately 50% of pregnancies, i.e. those with a female fetus, the cell samples can not be 

confirmed to be of tetal origin. Therefore, the development of a ncw method that can 

distinguish between fetal and maternal cells is neeessm)'. By the development of 

micromanipulation of single cells, Ictal cells can be distinguishcd from maternal cells by peR 

amplitication of unique fetal sequences, and thcreby, the identification of other inherited 

diseascs has become available in a laboratol)' setting. Takabayashi et al. (1995) were the first 

to report the lise of micromanipulation to remove single fetal cells isolated from maternal 

blood. They correctly identified fetal sex in ten of clcven cases of which five of six were 

male, with no Hllse positives. The same technique was applied to the diagnosis of Duchenne 

muscular dystrophy, Rhesus D (RhD), HLA-DQ alpha genotype by Sekizawa e/ (/1. (1996a, b, 

1998), diagnosis of spinal muscular atrophy by Chan et al. (1998), and ornithine 

transcarbamylase deficiency by Watanabc el al. (1998). Chcung et al. (1996) lIsed antibodies 

to fetal and/or embryonic hemoglobin to label fetal cells for isolation by miero·dissection 

from slides. They studied 10 pregnancies including one at risk of p-thalassemia and another 

of sickle cell disease. In both cases, they correctly predicted the fetal genotype as confirmed 

by chorionic villus sampling. 

The lise of single cell peR requires a high number of amplification cycles with a risk of 

exogenous DNA contamination resulting in false-positive results. Before single cell PCR can 

be applied for fetal diagnosis, fetal cells have to be identified by e)10iogical/immul1o" 

cytochemical staining requiring cell fixation on slides. This staining procedure and 

subsequcnt manipulation of fetal cells may callse breakage of DNA leading to false-negative 

results. Therefore, amplification of multiple fetal cells should be perfonned in order to obtain 

a reliable diagnosis. So far, micromanipulation and single cell peR of fetal cells has only 

been dcscribed in a laboratory setting. 
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1.4. Feto-maternal cell trafficking 

1.4.1. Timing and proportion 

Another issue involves the timing of feta-maternal transfer. Duc to the vel)' small volume of 

blood in the fetus and placenta, it was originally assumed that too fc\v cells were transferred 

from the fetus to the mother during the first trimester of pregnancy. However, it was 

demonstrated by several investigators that Y chromosomal DNA was present in matenwl 

blood smnples as early as 5 weeks ofgestatioll (La el al., 1990; Hamada el 01.,1993; Uou et 

aI" 1993; Thomas ef a/" 1994), It is most likely that early in gestation trophoblast cells will 

be the first to enter the maternal circulation due to the ongoing process of placentation. 

During this stage of embryonic development the numbers of fetal NRBCs and leukoc)1Cs arc 

expected to be very low. 

In several studies, it has been investigated at what time in pregnancy the number of fetal cells 

in the maternal circulation rcaches its maximum. Rclevant information regarding the 

frequency of rctal NRBCs in maternal blood is contradictOl)" and the frequency of ictal 

NRBCs was reported to Vat)' signiticantly among individuals and throughout the three 

trimcsters of pregnancy ranging from 10.5 to 10-8 (Price et al_, 1991; Hamada et al_, 1993; 

Siunga-Tallberg ef a/., 1995; Smid ef a/., 1997; Ganshh1 ef a/ .• 1998; Kuo, 1998). Using both 

FISH and PCR on llilSOlicd maternal blood, Hamada et al. (1993) reported frequencies of 

fetal NRBCs in the maternal blood ranging from 104 to 10-'. Sohda ef a/. (1997) estimated 

fetal NRBCs frequencies at 8.1 x I 0-5 and 1.6x I 0.5 in the first and secolld trimester. 

respectivcly. Kuo et al. (l998) recently demonstrated all increase in the total number of 

NRBCs in maternal blood as gestation advanced. The frequency increased from 2.4x 10-7 in 

early gestation (6-10 weeks) to 4.2x 10-6 near tenn. Howcvcr, the variations in the frcqueney 

of male DNA equivalents measured by PCR were different, increasing tl-om 2.7:-.:10-7 

(6-10 wecks) to a peak of 1.48x10·6 (15-20 weeks) and then slightly decreased to I.3lx10·6 

(33-39 weeks). This implies that before 24 weeks of gestation a significant proportion of 

NRBCs in matcrnal blood is of tetal origin whilst in late gestation the majority of NRBCs 

llIay be of maternal origin. 

The fetal cell frequency in maternal blood is inlluenced by a number of biological 

parameters_ Factors that may intluence these frequencies include the type of fetal cell 

analyzed, gestational age at the time of sampling and the accuracy of methods to enrich, 

identify and quantify the felal target population_ The occurrence of fetnl cells in matcrnal 

blood has been reported to be increased after chorionic villus smnpling (Jansen ct al., 1997), 

in women with preeclampsia (Chua et a/., 1991; Ganshirt ('I al., 1994; Holzgrcvc el al., 1998; 

La et al., 1999b, Chapter 5), and in pregnancies in which the retal and placental karyotypes 
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were abnormal (Elias et 01., 1992; Ganshirt-Ahlel1 et 01., 1993; Simpson and Elias, 1993; 

Bianchi et al., 1997). For chromosomal abnormal pregnancies, it has previollsly been 

suggested that feto-Illaternai cell trafficking may be the result of altered placental structures 

(Kuhlmann e/ aI" 1990; Simpson and Elias, 1994; Genest el (fl" 1995; Jauniaux and Hustin, 

1998), 

1.4,2, Clearance versus persistence of fetal cells from the maternal circulation 

Disappearance of fetal cells from the maternal circulation atter delivery is an impoliant 

consideration because of the implications for prenatal diagnosis of subsequent pregnancies. 

Clearance of fetal cells from the maternal circulation requires that there arc mechanisms by 

which fetal cells are continuously removed from the circulation. There are virtually no data 

un the fate of fetal cells in maternal blood, at least not in humans. Such data could lead to a 

better understanding of the fetD-maternal immune relationship, and of the purpose of feto­

maternal cell traffic in general. The main mechanisms of fetal cell clearance are removal by 

the maternal immune system, apoptotic cell death due to an inappropriate environment, and 

retention in maternal tissues, 

The fellls is a semi-allograft and it is well established that the paternal antigens elicit a 

response from the maternal immune system (\Vood, 1994). The fetus is protected by an 

unknown mechanism and it is not known whether this protection is also applied to individual 

fetal cells in thc maternal circulation. In mice, a rapid clearance of fetal cells by the maternal 

immune response has been demonstrated and this clearance mechanism would likely affect 

IllOSt types of fetal cells (Bonney and Matzingcr, 1997). Another mechanism may bc 

apoptosis of fetal cells. Proliferating progenitor cells in their variolls stages of differentiation 

nced specific eytokines for survival, otherwise they will apoptosc rapidly (\Villiams et al.) 

1990). These c)10kines are available in the hemopoietic tissues and probably in fetal blood, 

but Inay not be sufficiently supplied in the maternal peripheral blood, leading to fetal ccll 

death. On the other hand, fetal cells can leave the matcrnal circulation to settle in maternal 

tissllcs. These cells are most likely progeny from fetal stem ceUs that have lodged in the 

maternal hemopoietic tissues or trophoblast cells being trapped in the matcrnallungs. 

The possible persistence of fetal cells in maternal blood after delivel), is of concern because 

of the chance that diagnostic error might occur from genctic analysis of circulating cells that 

originated from a previous pregnancy. Long telln persistence of malc fetal cells in maternal 

blood has been described by several investigators (Schroder et aI" 1974; Ciaranti e/ 01., 1977; 

Hsieh et al., 1993; Hamada el 01., 1994; Liou et aI" 1994; Bianchi el al., 1996a). Schroder et 

al. (l974) originally described the persistencc of tetalleukoc)1eS in the maternal circulation 

aner delivel)" In this study, interphase Y body tluorescence was used to determine the 
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frequency of male fetal cells in maternal blood and the kinetics of their subsequent 

disappearance. In a group of 20 primigravidae sampled postpartulll, quinacrine fluorescent 

signals were detected up to I year after delivery. In a related study, Ciaranfi et (II. (1977) 

analyzed samples t1'om wOl11en 5~ 7 years nfter delivcl)' and detected male lymphoc)1Cs 

2 years aftcr bhth in more than half of the 62 samples <lllalyzed, However, these studies were 

performed in the 19705 using techniques that were less sensitive and less accurate than those 

available today. In 1994, Liou et al. investignted the presence of Y chromosome containing 

cells using peR in maternal blood samples from 28 pregnant WOIll.en, These samples were 

obtained lip to 10 months after delivel),. In 11 women, fetal cells were detected lip to four 

months after delivery but in one woman, the Y sequence was still detectable 10 months after 

delivery. Bianchi et al. (1996a) isolated 1110nonucleated cells by F ACS using antibodies to 

CD antigcns 3, 4, 5, 19, 23, 34 and 38, from 32 pregnant women and 8 nonpregnant womell 

who had given birth to malcs 6 months to 27 years earlier. In 4 out of 13 pregnancies with a 

female fetus, male DNA was detected by PCR, whereas in 6 out of 8 nonpregnant women the 

presence of male DNA was demonstrated in isolated CD34+CD38+ cells, even in a woman 

who had her last son 27 years prior to blood sampling. These isolated cells that contained 

male DNA may either have been lymphocytes from that time of pregnancy, or Illay be ,1 

false-positive rcsult since no blood samples were included in this -study that were derived 

from women who never had been pregnant at all. The occurrence of false-positive results is 

not unlikely with the currently used sensitive peR methods used for Y chromosome 

determination (see paragraph 1.3.2.). 

1.5. New research areas 

1.5.1. Fetal DNA in maternal plasma and serum 

Almost all prior studies ill the prist have focused on complete and intact fetal cells in the 

maternal circulation, suitable for either cell culture 01' f-ISH or DNA analysis. Recently, 

however, Lo et 01. (1997, J998a) demonstrated the presence of fetal DNA in maternal plasma 

and serum by llsing a quantitative peR assay tor the sex-determining region Y (SRY) gene 

011 the Y chromosome, as a marker for male fctuses. These Ictal DNA levels gradually 

increased in the course of pregnancy, especially towards the end of pregnancy. They 

demonstrated that significantly more fetal DNA was present in the Sel1l111 and plasma than 

prior studies using intact fetal cells would indicate. A mechanism that could explain these 

t1ndings is continuous leakage of fetal cells across the placcnta which are rapidly destroyed 

by the maternal immune system, leaving DNA remaining in the plasma. This would imply 

that invcstigators who isolated fetal cells fi'ol11 maternal blood only detected a limited fraction 
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of what had entered the maternal circulation. An alternative explanation is that there is active 

remodeling of the placenta at the feto-maternal interi11ce, with continuous ccll lysis and 

release of fetal DNA into the maternal circulation. 

High concentrations of fetal DNA have also been detected in maternal plasma before 

spontaneous pretenn deJivel)l, which may be lIsed as a marker for preterm lahour (Leung ef 

al., 1998). Another clinical application of fetal DNA in maternal plasma/serulll is the 

detection of RhD-speeilic sequences. Knowledge of fetal RhD genotype is imp0l1ant in the 

management of rhesus allo-immunisation during pregnancy. Fetal RhD has been successtlilly 

demonstrated illl11aternal plasma and serum by several investigators (Faas et al., 1998; Lo et 

al., 1998b; Bischoff e/ al., 1999). 

Reccntly, Lo el al. (1999c) analyzed plasma samples of women 1 to 42 days after delivery of 

a male baby and found that circulating fetal DNA was undetectable by day I after delivel)" 

whereas most maternal plasma samples showed undetectable levels of circulating fetal DNA 

by 2 hours postpartulll. Moreover, they demonstrated a rise in plasma fetal DNA 

concentrations shortly after delivel)', i.e. 5 minutes, compared with the predcIivel), fetal DNA 

levels, indicating that a felo-maternal transfusion may OCClll' at time of deli vel)'. The 

observation of rapid clearance of Ictal DNA from maternal plasma suggests that analysis of 

circulating Ictal DNA is morc powerful than analysis of intact fetal cells, because of the 

lower risk to detect Ictal DNA from previous pregnancies. However, technical limitations to 

distinguish fetal DNA from maternal DNA might limit application of this technique. 

The same group (Lo ef al., 1999a) recently demonstrated high concentrations of cell-free fetal 

DNA in plasma samples in a proportion of women carrying a fetus with trisomy 21. 

However, peR amplification of Y chromosomal sequences was lIsed and DNA 

concentrations of normal pregnancies overlapped these of trisomic pregnancies. In order to 

quantitatively analyse the DNA concentration in trisomy 2l pregnancies, additional markers 

on chromosome 21 will be necessary. For a definitive kal)'otypic diagnosis, the isolation of 

circulating nucleated fetal cells still remains the best candidate technology for the 

development of non -invasive prenatal diagnosis of fetal aneuploidies. 

1.5.2. /11 vitro expansion of fetal cells 

If fetal cells could be stimulated to proliferate in culture, the technical limitations of working 

with vel)' small numbers of cells could be overcome. The idea to increase the numbers of 

fetal cells fi'olll maternal blood by amplification of progenitor cells has been discussed for a 

long time. A hemopoietic clonogenic cell can produce hundreds to thousands of progeny, so 

that a culture with even jllst one fetal clonogenic cell could yield a sufficient number of fetal 

cells for the diagnosis of genetic abnormalities. 
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The tirst attempt to culturc fetal cells was reported in 1994. Alter (1994) cultured red cells by 

exploiting the difference in sensitivity of fctal and maternal red cells to cl)1hropoietill in 

culture. The technique was successfully tested in a model system, confinning that there is a 

growth differential in favor of neonatal cells of lip to tenfold. La et aI, (1994a) used a similar 

method in a study on five maternal blood samples where the fetus was known to be male. 

Using peR, they identified the Y chromosome in all five cases after seven days of culture. 

Valerio el al. (1996) utilized a magnetic cell s0I1ing method to separate fetal CI)lthroid 

progenitor cells from maternal blood and slIccessfully cultured them for 10-12 days, followed 

by the detection ofY chromosomal sequences lIsing peR and FISH. 

rvlore recently, Bohmer el al. (I998, 1999) described a novel method to distinguish fetal from 

maternal cells in culture based on differences in fetal hemoglobin production. During the tlrst 

week of culture, fetal el)1hroid cells exclusively expressed HbF, whereas the majority of 

matel1lal cells contained high levels of adult hemoglobin (HbA) alone or a combination of 

HbF and HbA. However, this preferential growth was not observed by others. Two recent 

reports demonstrated that culturing of fetal el)ithroid cells derived from contaminating 

maternal blood mainly produced el)1hroid colonies derived from maternal CI)1hroid 

progenitors (Chen e/ a1., 1998; Han e/ a1., 1999). 

So far, 1110st attcntion has been focussed on thc amplification of fetal cl)1hroid progenitors. In 

1997, Little el al. cultured FACS-s0I1ed CD34+ hemopoietic progenitor cells derived from 

10-13 week maternal blood samples. They showed a slight expansion of fetal CD34+ cells 

after 5 days of culture, but in most cases (10 out of 18 (55 %» 110 male fetal cells could be 

detected. 

These studies suggest that in vitro expansion of fetal cclls is not yet suitable for clinical 

application since the extent of expansion of the different fetal cell types is eontradictOl)' and 

becausc of the small numbers of analyzed cases in the different studies. 

1.5.3. Fetal cell microchimerism 

As described abovc, the possible pcrsistenee of fetal cells in maternal blood after delivel), is a 

concern because of the chance that diagnostic error might occur from genetic analysis of 

circulating cells that originated from a previolls pregnancy. Long term persistence of male 

fetal cells in maternal blood has been describcd by several investigators (Schroder el al., 

1974; Ciaranli el al., 1977; Hsieh et aI" 1993; Hamada el al., 1994; Bianchi el al., 1996a). 

This led to the speculation that normal pregnancy can lead to a physiological state of 

low-grade microchimerislll in a woman. Jt has been suggested that persistence of fetal cells 

atter birth may be related to the etiology of autoimmune disorders that have a higher 

incidence in women and have an onset after the child-bearing years. Evidence for this 
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hypothesis came in 1998, when Nelson demonstrated significantly increased amounts of male 

fetal DNA in peripheral blood of women who suffered from the disease scleroderma, as 

compared to their heahhy sisters and normal controls. In addition, Arlelt et al. (1998) 

demonstrated male lymphoc)1CS in skin biopsies of women with scleroderma. 

At the time of delivel), a feto-maternal transfusion might OCClll" including some fetal cells 

with proliferative potential. These fetal cells can migrate to lymphopoietic organs and 

proliferate. Subsequently, a graft-versus-host response Illay occur, which may result in the 

development of an autoimmune disease. 

1.6. Conclusions and objectives of the thesis 

The last few decades, many investigators have focllssed on the isotation of fetal cells fromlhe 

matel1lal circulation in order to develop a non-invasive prenatal diagnostic test. The optimal 

fetal cell type to target appears to be the fetal NRBCs since they are present most abundantly 

in the fetlls during the first trimester of pregnancy, they have a limited life-span and may not 

persist from prior pregnancies. However, the number of fetal NRBCs in the maternal 

circulation remains velY low and extensive enrichment and purification strategies arc 

necessaty to increase the detectability of these cells. If fetal cells can eventually be isolated, 

possible clinical applications include screening for fetal chromosome abnormalities by FISH 

and for gene abnormalities by PCR. 

Before the isolation of fetal cells can be used for diagnostic purposes! several biological 

questions have to be answered and technical obstaclcs have to be overcome. Froll1 

biological point of view, we need to know more about the number of fetal cells, fctal cell 

types and their propcliies to dit:.tinguish these cells from maternal celis, as well as the 

biological consequences of their presence in the maternal circulation. Data on the frequency 

of fctal cells in maternal blood are contradictOlY as the frequency of fetal NRBCs appears to 

vary among individuals and throughout the three trimesters of pregnancy. Under some 

circumstances, the number of fctal cells in maternal blood is increased, i.e. in cases with a 

chromosomally abnormal fctus, in pregnancies complicated with preeclampsia and anel" 

chorionic villus sampling. From a technical point of view, we need to maximize both yield 

and purity of the isolation procedure to improve the identification of fetal cells. In order to 

optimize isolation strategies, different model systems have been described using m1ifieial 

mixtures of male neonatal cord blood cells 01" male fetal liver ceils, and adult fcmale 

peripheral blood cells. In these model systems, different isolation protocols were evaluated. 

A new research area concerns the ifll'itro expansion of fetal cells. The question as to whether 

fetal cells can he elonally expanded in order to increase their deteetability has partly been 
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resolved by several recent studies. EI)1hroid as well as other hemopoietic progenitor cells 

have been sllccessfully expanded. 

According to these biological and technical questions the following objectives of this thesis 

were detined: 

t. The development of a model system using ill vitro expanded CI)1hroid cells derived from 

umbilical cord blood samples for the evaluation of different isolation strategies for the 

enrichment of fl'lal NRBCs in maternal blood. This part of the study is presented in 

Chapter 2. 

2. Examination of the preferential expansion of hemopoietic progenitor cells derived from 

male umbilical cord blood samples diluted into female progenitor cells, According to this 

expansion protocol, the usefulness of in vitfo expansion of fetal hemopoietic progenitor 

cells isolated from maternal blood for diagnostic purposes was evaluated. Results of this 

part of the study are prcscnted in Chapter 3. 

3. Determination of the effect of chorionic villus sampling on the number of fetal cells 

isolated from maternal blood and 011 maternal serum alpha-fetoprotein levels. Data of this 

study are shown in Chapter 4. 

4. Thc impact of maternal preeclampsia on the incidence of fetal cells in the maternal 

circulation. These results are presented in Chapter 5. 
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The isolation of fctal cells from maternal blood is hampered by the low frequency of these 

cells in maternal blood requiring extensive enrichment and purification procedures before any 

detection techniques for fetal cells can be applied. A considerable amount of effort has been 

concentrated on the improvement of different isolation techniques. The currently lIsed 

isolation strategies, like MACS and FACS have been optimized usiug model systems in 

which male umbilical cord blood cells or fetal liver cells were diluted into adult female 

peripheral blood mononuclear cells. This chapter describes the use of in vitro expanded 

CI)'throid cells in a model system for the isolation of fetal cells from maternal blood. These 

cells were iml11unophenotypically identical to fetal Ilucleated red blood cells isolated from 

maternal blood expressing high levels o~ CD71 and were lIsed to compare two different 

MACS isolation procedures: isolation of CD7l+ cells after depletion of lymphocytes and 

monoc)1es, and the direct enrichment of CD?I + cells. 

1) John Wiley & Sons Limited; reproduced with permission. 
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ABSTRACT 

The development of a non~invasive prcnatal diagnostic test using fetal nucleated red blood 

cells (NRBCs) isolated from the maternal circulation is hampered by the low frequcncy of 

these cells in maternal blood requiring extcnsive enrichment procedures before any analytical 

procedure can be pertormed. In order to improve and simplify these proccdures, we have 

used in vitro expanded CI),throid cells derived from male umbilical cord blood in a model 

systcm lor thc isolation qf fetal NRBCs from maternal blood. Erythroblnst cells were ill \'ilro 

expanded to high cell numbers and wcre immunophcllotypieally identical to fctal NRBCs 

isolnted from maternal blood. Magnetic activated cell sorting (MACS) isolation procedures 

wcre optimized using in vitro expnllded male NRBCs diluted up to 1 in 400,000 with femnle 

peripheral blood monollueleatcd cells. The number of recovered male cells was determined 

using two-color fluorescence in situ hybridizntion with X and Y chromosomal probes. Using 

this model system, an NRBC isolation technique is described, It is based on a one-step 

MACS enrichment protocol for CD7l+ cells, which showed a signil1cant (\Vilcoxon signed 

ranks test, p<0.05) two~fold higher yidd of male NRRCs than previollsly described ~\'lACS 

methodologies, in which CD7l -+ cells were enriched after depletion of other cell types. 

Application of thl:se isolation strategies to maternnl blood samples resulted in n similar 

improved enrichment of male felnl cells aftcr the direct enrichment ofCD71 + cells. 

INTRODUCTION 

Fetal blood cells that leak through the placenta into the maternal circulation provide a 

potential source of fetnl matcrial tOI' the development of a nOI1~ill\'nsive pret1ntnl dingnostic 

test. Four uifferent fetal cell types have been detected in maternal blood: trophoblast cells 

(Goodfellow and Taylor, 1982), lymphoc)1es (Herzenberg el al., 1979), granuloc)1es 

(Wessman el al., 1992) and nnelcated red blood cells (NRBCs) (Bianchi el al., 1990). Most 
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attention has been focused on the NRBCs which hnve been isolated lIsing antibodies against 

membrane-bound markers (CD7I, glycophorin A) 01' intraccllular antigens (hemoglobin F) 

(Loken el 01., 1987; Bianchi el al., 1990; Zhcng el al., 1995). 

Since the number of fetal NRBCs in maternal blood is very low, isolation of these cells 

requires extensive enrichment and purification procedures. Two nH~ior methods of cell 

separation enable fetal cell isolation from maternal blood: fluorescence activated cell sorting 

(FACS) (Bianchi el al., 1990) and magnetic activated cell s0I1ing (MACS) (Ganshirt-AhlcI1 

el al., 1992). 

In order to obtain an optimal isolation procedure, different modcl systems have been 

described using artificial mixtures of male neonatal cord blood cells or male fctal liver cells, 

and adult female peripheral blood mononuclear cells (Andrews e! al., 1995; Bianchi e! al., 

1996). In these model systems, different isolation protocols were evaluated using density 

gradient centrifugation, MACS, F ACS or illllllullomagnctic beads for the isolation of 

CD7l + NRBCs, after depletion of fcmale peripheral blood mononuclear cells. 

In the present study, we describe a MACS isolation protocol, in which we used in vitro 

expanded NRBCs derivcd from male umbilical cord blood mixed with female peripheral 

blood monollllcleated cells as a model system for the isolntion of fetal NRBCs from maternal 

blood. \Ve were able to expand these NRBCs to high cell numbers and to maintain these cells 

in an erythroblastic cell stage. These in vitro expanded NRBCs also showed a high level of 

CD71 expression, In the described model system, CD7l + cells were isolated lIsing a one-step 

MACS isolation protocol based on the direct enrichment of CD7l + cells. This isolation 

procedure is compared with a previously published and commonly used two-step technique 

based on depletion of lllonoc)1es (CDI4) and lymphocytes (CD45) followed by the 

enrichment ofCD71+ cells (Busch et al., 1994; Jansen e! al., 1997). It is suggested that these 

depletion procedures may cause cell damage and cell loss, leading to lower levels of recovery 

of fetal NRBCs. Isolation efficiencies tor both MACS isolation proccdures were also 

compared tOI' the isolation of male CD71 + fetal cells from maternal blood samples. The 

number of recovered male CD71+ cells was analyzed by two-color FISH for X and Y 

chromosomes. 

MA TERIALS AND METHODS 

/n "itro expansion 0./ elyt hroblas! cells 

Male umbilical cord blood samples (1-5 ml) were collected immediately aner birth into 

vacutainers containing ethylenediaminetetra-acetic acid (EDTA). Blood snlllpies were diluted 

1: I with phosphate buffered saline (PBS) and mononucleated cells wcre isolated by Ficoll~ 

Paque-Plus (1.077 glml; Pharmacia Biotech, Uppsala, Sweden) density gradient 
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centrifugation at 750 G for 20 minutes. Cells were washed once with lscovc's modified 

Dulbecco's medium (Life Technologies B.V., Breda, The Netherlands) containing to % fetal 

calf serum (FCS) and centrifuged at 370 G for 5 minutes. Cord blood cells were cultured as 

recently described by von Lindern et al. (1998). Brietly, cells were cultured at 37 "C and 

5 %C02 at a density of 106 celis/ill I in CFU-E medium as described previously (Hayman et 

al., 1993; Schroeder et al., 1993), with minor modifications: conalbumin was replaced by 

human transferrin-holo (Intergen, Toronto, Canada), chicken serulll was omitted and only 

FCS (12 %) was used. Human stem cell factor (100 ngll11l), human recombinant 

elythropoietin (0.5 U/ml; Boerhinger Mannheim GmbH, GcnllCIIlY), and dexamethasone 

(106 fv1; 0-1756, Sigma-Aldrich Chemie GmbH, Stcinheim, Gennany) were added every 

second day. After two days, remaining erythrocytes were removed by Ficoll-Paquc-Plus 

density gradient centrifugation at 750 G for 20 minutes. After 7-10 days, erythroblast cells 

(NRBCs) were isolated using Percoll (1.072 g/ml; Pharmacia Biotech). The number of cells 

and cell size distribution were"determined in an electronic cell counter (Casy-I.; Schtirfc 

system, Germany), followed by analysis of CD71 and CD45 expression lIsing a FACSscan 

(Becton Dickinson, San Jose, CA, USA). On day l2, ullulilized ill \'itro expanded erythroid 

cells were aliquotcd and stored in liquid nitrogen until further usage. 

To analyze cell morphology, cells were c)10centrifuged onto slides and stained with 

hematological dyes and neutral benzidine for hemoglobin (Beug et 01., 1982). 

AIodel .~ystem 

Two different MACS isolation procedures were compared using a mixture of male in \'itl'o 

expandcd NRBCs and female peripheral blood mononuclear ceils. To this end, 50 or 500 

male CD71+ICD45- cells were diluted in 10-20x106 female cells. The one-step method 

involved the direct enrichment of CD71 + cells, whereas the two-step method included 

depletion ofCD45+ and CDI4+ cells followed by the enrichment ofCD7I+ cells. 

Patient samples 

Peripheral venous blood samples (13-20 Ill!) were obtain cd from pregnant v.,ramen at 

12-14 weeks of gestation immediately before chorionic villus sampling (CVS), and collectcd 

into vaclltainers containing ethylenediaminetetra-acctie acid (EOTA). In 31 cases, the fetal 

kmyotype was 46,XY as was demonstrated by cytogenetic analysis on semi-direct villus 

preparations. The one~step MACS isolation procedure was lIsed in 14 of these maternal blood 

samples, whereas 17 cases were subjected to the two-step method. All blood samples were 

obtained with the patients' informed consent. 
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Allfihm()! labeling, FACS ({na~l'si!:; and MACS' sep(ff'((lio}1 

111 vitro expanded NRBCs derived from male umbilical cord blood were labeled with 

C07l-riTC (5 plll06 cells: 100 pg/llll: LOI.I, IgG2a, Becton Dickinson) and CD45-PE 

(51111106 cells: CLB, Amsterdam, The Netherlands) in 200 III MACS buffer (PBS containing 

1 % BSA, 0.0 I % sodiulll azide (NaN)) and 5 mM EDTA) supplcmented with 5 % human 

serum and the CD71 and CD45 expression was measured lIsing a FACSscan. In evel), 

experiment, only NRBCs with an expression of C07I in 95-99 % of the cells and a CD45 

expression in less than 5 % orthe cells were used. 

Maternal blood samples and peripheral venolis blood samples of non-pregnant fcmale 

volunteers were diluted I: I with PBS and mOllollucleated cells were isolated by Ficoll-Paquc­

Plus density gradient centrifugation at 750 G for 10 minutes. Cells were washed twice in 

MACS buffer and centrifuged at 250 G for 10 minutes. The Humber of viable cells was 

calculated using a BUrkeI' counting chamber. 

Mononuclear cells derived from maternal blood and mixtures of 50 or 500 male C071 + cells 

with 10-20 x 106 female mononuclear cells were processed for the ditlerent MACS isolation 

procedures. For the one-step procedure, cell sllspensions were labeled on ice with 

CD71-FITC (10 1111106 cells) in 200 III MACS buffer with 5 % human serum for 15 Illiuutes. 

Cells were washed in MACS buffer and labeled with IgG2a+b-conjugated microbcads 

(20 pili 07 cells; rvliltenyi Biotcc~ Bergisch Glaubach, Germany) for 15 minutes at 4 \lC. Cells 

were washed ill MACS buffer, resuspended in 1 Illi MACS buffer and applied via a pre­

separation filter (30 pm; CLB) onto a miniMACS column (type MS; Miltenyi). The nOI1-

attached fraction was collected and applied again to the column in order to achieve (111 

optimal depletion. After removing the column from the magnet, C07I+ cells wcre eluted 

with 101111 MACS buffer. For the two-step procedure, cell labeling and MACS separation 

were performed as described previollsly (Jansen et al., 1997). Brieny, cells were labeled for 

15 minutes on icc with CD45-PE (50 11I/20 x 106 cells) in 200 III MACS buffer with 5 % 

human serum, washed once in i'vIACS buffer and labeled with CD1<-1-conjugatcd microbeads 

and rat anti-mollse IgGl-conjugated microbeads (20 ~tl1I07 cells each; j'vtiltenyi Biotec) at 

<-1°C for 15 minutes. Labeled cells were resuspended in I ml i'vIACS buffer and applied to an 

AS-dcpletion column (Miltenyi) using a 26G needle as flow resistor. The negative fraction 

was applied again to the column in order to achieve an optimal depletion. Antibody labeling 

and l\'IACS separation for the negative fraction obtained after depiction was performed as 

described tlJl' the one-step isolation proceJure. The number of viable cells ill each fraction 

was calculated using a BUrkeI' counting chamber. 
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j;1uorescellce ill situ hybridization (VISH) 

Cell fractions were treated with 75 mM KCI, incubated for 18 minutes at 37°C, fixed in 

methanol: acetic acid (3:1) and stored at _20°C until further analysis, Cells were dropped 

onto Vectabond™ (Vector Laboratories, Inc, Burlingame, CA, USA) coated slides and 

air-dried, Slides were heated for 10 minutes at 80°C and pre-treated with pepsin (l00 ~Ig/ml) 

in 0,01 N HCl at 37°C for 15 minutes, followed by postfixation in 3,7 % formaldehyde in 

PI3S for 15 minutes, Subsequently, slides were denatured for 5 minutes in 70 % fOllllamide 

(pH 7.5) in 2X SSC at 75 "c, followed by dehydration in 70 %, 90 % and 100 % ethanol for 

1 minute each, Slides were prewarmed at 45°C until the probe was applied, 

Two-color FISH was performed using a Spectrum Orange labeled alpha-satellite probe 

(DXZl) for centromcre region Xp 11.1-'1 11.1 and a SpectrumGreen labeled satel! ite III probe 

for the Yq12 rcgion (Vysis, Downers Grove, IL, USA), The probes were dcnatured for 

5 minutes at 75°C and hybridization was allowed to eontinlle overnight at 42°C in a 

humidified chamber. 

Slides were post-washed at 70 "c in OAX SSClO.3 % NP-40 (pH 7.2), followed by 

5-60 seconds in 2X SSC/O,I % NP-40 (pH 7,2) at room temperature, Slides were mountcd in 

Vcctashield mounting medium (Vector Laboratories, Inc,) containing DAPI (4', 6-diamidino-

2-phcnylindolc) and analyzed under a Leica Aristoplan fluorescence microscope using a 

triple band-pass filter block, Images were captured using a Xybion CCD 24-bit color camera 

with a Genetiscan Probe Master system and MaeProbc 2,5 image analysis software (PSI, 

Chester, UK). 
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RESULTS 

i\Iodel !lysfem 

Male neonatal NRBCs were in \'itro expanded by exposure to stem cell factor (SCF)~ 

erythropoietin and dexamethasone. After eight days in culture, an increase in cell size 

(figure 1), a decreased expression ofCD45 and an increased expression orCD71 were noted 

(figure 2). The expanded cell population was characterized by all expression of C045 in less 

than 5 % of the cells and a CD7l expression in 95 % to 99 % of the cells. i'vlorphologically, 

these cells predominantly resemble procl')1hroblast cells and basophilic cl),throblast cells 

(tigure 3). 

Cell mixtures of 50 or 500 expanded male NRBCs and 10-20 x 106 female peripheral blood 

mononuclear cells were lIsed for MACS isolation of NRBCs. Two MACS isolation 

procedures were compared: a olle~step protocol based on the enrichment of CD71+ cells 

alone, and a two-step isolation procedure in which CD71 enrichment was combined with an 

initial depletion ofCD45+ and CDI4+ cells. 

Figure 2 
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The number of XY cells in the MACS-cnriched thlctions was dctcnnincd by two-color FISH 

using X and Y chromosome-specific probes (figure 4; table 1). The total number of cells in 

Ihe CD71+ fi'aclionlhal was analyzed by FISH ranged belween 1-25 x 10' (mean 10.8 x 10') 

after the one-step isolation procedlll'e and between I-II x 10"' (mean 5.3 x 10"') after the 

two-step isolation procedure (table 1). Using the one-step isolatiotl procedure, the number of 

XY positive cells recovered after addition of 50 male CD?l+ celis, ranged from 2-25 XY 

cells (4-50 %) with a mean of 8 XY cells (16 %), whereas after addition of 500 male 

CD?! + cells, the number of XY positive cells varied between 32 and 195 XY cells (6-39 %), 

with a mean number of XY cells of 79.8 (16 %). The number of XY positive cells in the 

CD71 + fraction recovered after the two-step isolation procedure ranged fi'om 2-9 XY cells 

(4-19 %) aftcr addition of 50 male CD71+ cclls, with a mcannumbcr ofcclls of 4.2 XY cells 

(8.3 %). After add ilion of 500 male CD71+ cells, between 5 and 130 XY cells (1-26 %) could 

be identified in the CD?l + fraction, with a mean Ilumber of XV cells of39.7 (7.9 %). 

Figure 3 
Combination of a hematological and 
neutral benzidine staining for 
hemoglobin of ill vitro expanded 
erythroid cells derived from male 
umbilical cord blood. More mature 
erythroid cells stained yellow to 
brownish due to the presence of 
hemoglobin. 

Figure ... 
111 sitll hybridization on a MACS· 
enriched fraction of female peripheral 
blood mononuclear cells mixed with a 
known number of ill vitro expanded 
male erythroid cells. One male 
erythroid cell is shown characterized by 
both a Y (green) and an X (red) 
chromosomal signal, and several female 
peripheral blood mononuclear cells are 
shown \vith two X chromosomal 
signals (red). (magnification xlOOO) 
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After addition of 50 as well as 500 male CD7I + cells, the one-step isolation procedure 

showed a mean number ofXY positive cells twice as high as the number orXY positive cells 

recovered after the two-step isolation procedure. This higher level of recovery was significant 

in the condition in which 500 male CD7I + cells were added (\Vilcoxon Signed Ranks Test, 

p<O.05). 

Tnble 1 Number of XY cells recovered after r..'IACS isolation using the one-step and two-step 
procedure 

One-step procedure Two-step procedure 
Number of cells Number xv cells in Number of cells Number XY cells in 
analyzed (x 1 0-1) C07l + fraction analyzed (x 1 O~) CD71+ fraction 

Experiment I 
50XY+ 12x 106 XX 25 (50 %) 9 7 (14 %) 

500 XV + 12 X 106 XX 5 195 (39%) 6 130 (26%) 

Experiment 2 
SOXY+ lOx 106 XX 4 5 (10 %) 3 (6 %) 

500XY+IOxIO(;XX 4 77 (15 %) 11 12 (2.4 %) 

Experiment 3 
50 XY + 20 x 10(; XX 25 4 (8%) 6 9 (\S %) 

500XY+20x 106XX 20 91 (IS %) 3 3t (6%) 

Expcriment 4 
50XY+ 12x 106XX 7 3 (6 %) 3 2 (4%) 

500XY+ 12x 106XX 7 32 (6%) 8 34 (7%) 

Experiment 5 
50XY+15xl06 XX 6 2 (4 %) 2 (4 %) 

500XY+15xlO(;XX 7 45 (9%) 7 26 (5 %) 

Experiment 6 
50XY+15x106 XX 21 9 (IS %) 5 2 (4 %) 

500 XY + 15 X 106 XX 22 39 (8%) 4 5 (I %) 

I\lcan vHlucs 
50 XY 10.7 8.0 (16 %) 4.2 4.2 (S.3 %) 

500 XY 10.8 79,S (16 %) 6,5 39.7 (7.9 %) 

A/aterl/al blood samples 

The two different rvlACS isolation procedures were also used for the isolation of fetal NRBCs 

from maternal blood. Maternal blood samples, from pregnancies from which the 

fetal karyotype was 46,XY, were obtained before chorionic villus sampling (CVS) from 

31 pregnant women at 12-14 weeks of gestation. In 14 cases, cells were isolated using the 

one-step MACS isolation procedure, whereas in 17 cases the two-step isolation procedure 

was used (table 2). The number of mononuclear cells before MACS isolation 
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Table 2 Number of XY cells recovered from mutcrnu[ blood ufter MACS isolution using the 
one-step und two-step procedures 

Karyotype Gestational age Number of cells befixe Number of cells Number ofXY cells 
(weeks) i\lACS isolation (xI06) analyzed (x I 0-1) 

One-step procedllre 

46, XY 12 24.0 5 0 
46, XY 13 32.4 88 IJ 
46,XY 14 24.0 20 0 
46, XV 12 32.4 30 0 
46, XY 12 36.6 48 0 
46, XV 12 30.9 16 0 
46, XY 12 26.3 21 0 
46, XY 13 23.4 15 0 
46, XV 12 33.3 IQ 2 
46, XY 13 24.9 22 2 
46, XY 12 49.8 25 2 
46, XY 12 23.4 23 I 
46, XY 12 16.3 24 0 
46, XY 13 30.9 4Q 2 

iV[ean values 12 29.2 28.9 0.6 

Two-step procedure 

46, XY 12 24.3 II 0 
46, XY 12 28.5 9 0 
46, XY 12 38.7 27 0 
46, XY 12 38.7 18 I 
46, XY 12 31.3 8 I 
46, XY 12 49.0 29 0 
46, XY 12 29.0 25 2 
46, XY 12 35.1 II I 
46, XY IJ 42.0 80 0 
46, XY 12 17.0 6 0 
46, XY 12 55.0 1.5 0 
46, XY 12 41.7 14 0 
46, XY IJ 13.2 8 0 
46, XY 12 31.2 21 0 
46, XY 13 26.4 20 0 
46, XY 12 23.0 14 0 
46, XY 12 30.3 17 0 

1\fean values 12 32.6 18.8 0.3 

ranged from 16.3-49.8 X 106 (mean 29.2 x 106
) for the one-step isolation procedure and from 

13.2-55.0 x 106 (mean 32.6 x 106
) for the two-step isolation procedure. The Ilumber of cells 

analyzed in the CD71+ fraction ranged between 5-88 x 104 (mean 28.9 x 104
) after the 

one-step isolation procedure and between 1.5-80 x 104 (mean 18.8 x 104
) after the two-step 

isolation procedure. The number of XY positive cells that was found after the one-step and 
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two-step isolation procedures varied between 0 and 2 Xl' cells! with a mean of 0.6 and 

0.3 XY cells, respectively. In 5 out of 14 cases (35.7 %) and in 4 out of 17 cases (23.5 %) 

XY positive cells could be detected llsing the one-step 01' two-step isolation protocol, 

respectively. This bettcr enrichment of male cells after the direct enrichment of CD71 + cells 

did not reach statistical significance. 

DISCUSSION 

In this paper, we describe a model system for the isolation of fetal cells from mntcrnal blood 

lIsing in "Uro expanded NRBCs derived from male umbilical cord blood. Umbilical cord 

blood was prefered above adult peripheral blood because of the larger amount of immature 

erythroid cells. Although fetal blood samples contain lllallY immature erythroid cells, they arc 

more difficult to obtain and arc frequently contaminated with significant amounts of maternal 

blood. 

Two different MACS isolation procedures were compared by analysis of recovery of known 

numbers of male cells mixed into female cells. In contrast to previously reported model 

systems for fetal cell isolation from maternal blood (Andrews et al., 1995; Bianchi et al., 

1996), in which cord blood cells or fetal liver cells were used, we were able to obtain a 

homogenolls el)1hroid cell population derived from in vitro expanded umbilical cord blood 

cells. These clythroid cclis could be il1vitro expanded to high cell numbers (101_108 el)lthroid 

celis/ill I cord blood, after 10-15 days of culturing) and could be maintained in an 

el)1hroblastic ceIl stage. The expanded el)1hroid celIs were illllllllllophellol),picaIly idenlical 

to fetal NRBCs derived from 10-20 week fetal liver (Bianchi, 1994), expressing high levels 

of CD71, a cell surface Ilwrker frequently used for the isolation of fetal NRBCs from 

maternal blood. This might indicate that the in vitro expanded erythroid cells resemble fetal 

NRBCs circulating in maternal blood. 

Using these CD7l + cells, we were able to quantitatively compare two different MACS 

isolation procedures: a one-step isolation procedure which includes the enrichment of 

CD71 + cells alone, without depiction of other cell types, and a previollsly described (Busch 

el al., 1994; Jansen el al., 1997) and widely employed two-step isolation procedure which 

includes Ihe depletion of monoc)1es (CDI4) and lymphoc)1es (CD45) followed by the 

enrichment of CD71 + cells. Although the results of our experiments demonstrated a marked 

variation in the number of male cells recovered, the MACS isolation based on the enrichment 

ofCD71+ cells alone was found to be two-tbld more efficient and less time consuming than 

the combined depletion/enrichment protocol. 

The two different MACS isolation strategies were also llsed for the isolation of fetal 

CD71 + cells from maternal blood samples. Although the number of male cells that could be 
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isolated from maternal blood was VCI)' low (0-2 cells per sample), it was shown that the one­

step procedure resulted in a tcndency towards a better recovcl), of male cells compared with 

the two-step protocol. 

Thc one-step MACS isolation procedure was also shown to result in a highcr absolute 

numbcr of cells in thc CD71+ fraction, in the model systcm as well as in maternal blood 

samples. This increase was due to the presence ofCD4S+ CD71+ and CD14+CD71+ cells, 

Iikcly representing activated lymphocytes and monocytes of maternal origin, respectively, 

which are depleted atler the two-step MACS isolation procedure. Altelllativciy, the CD71+ 

fraction obtained after the one-step isolation procedurc may comprise cells of the el)1hroid 

lineage that still express CD4S at a low levcl and which werc not depleted using the 

combined depiction/enrichment protocol. This may explain the two-fold higher yield of male 

cells observed after the one-stcp isolation protocol. 

An intcresting question that arises is, whether the ill vitro cxpansion protocol for erythroid 

cclls described in this paper can also be used for the cxpansion of fetal NRBCs derived from 

maternal blood. It has previously been described that fetal committed el)lthroid progenitors 

(CFU-E, M-BFU-E) derived from matcrnal blood were successfully proliferated in vitro after 

their prior enrichment by biotin-labeled human el)1hropoietin ligand and MACS (Valerio el 

al., 1996). Also the expansion of CD34+ hematopoietic progenitor cells isolated from 

maternal blood by FACS has been reported (Little e/ 01.,1997). However, Chen e/ 01. (1998) 

recently showed that culturing of fetal el)1hroblast cells derived from maternal blood mainly 

produced el)1hroid colonies derived from maternal el)1hroid progenitors. In gencral, 

expansion of fetal cells for analytical purposes is highly desirable given the rarity of these 

cells in the maternal circulation. Amplification of the number of fetal NRBCs using 

expansion protocols like the one described in this paper, might facilitate nOll-invasive 

prcnatal detection of genetic abnormalities in the future. Howevcr, fetal eell enrichment 

protocols should be improved tlrst in order to acquire higher rccovery levels of fetal cl)1.hroid 

cells. 

In sllmmm)" a more efficicnt and less time-consllming one-step ivlACS isolation procedure is 

described that improvcs the isolation of NRBCs in both the model system as well as in 

maternal blood samples. In addition, the in vitro cxpanded NRBCs llsed in thc model systcm 

may not only be used to optimize diffcrcnt isolatioll strategies, but may also be of help in the 

developmcnt of new detection and analysis techniques for fetal el)'throiu cells isolated from 

maternal blood. 
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The idea to increase the number of fctal cells from maternal blood by amplification of fetal 

hemopoietic progenitor cells has been discussed for a long time. If fetal cells could be 

stimulated to proliferate in culture, the technical limitations of working with Vel)' small 

Ilumbers of cells could be overcome. This chapter describes the evaluation of the usefulness 

of in Vi/I'D expansion of fetal hemopoietic progenitor cells from maternal blood for diagnostic 

purposes. In order to determine whether limiting numbers of fetal CD34+ cells present in an 

excess of maternal cells are able to overgrow the maternal component, we used a model 

system in which limiting numbers of male CD34+ umbilical cord blood cells were diluted 

into female CD34+ peripheral blood mononuclear cells and in vitro expanded in liquid 

culture. The same culture protocol was applied to CD34+ cells isolated from maternal blood 

samples obtained at 7-16 weeks of gestation and the number of XY positive cells was 

determined lIsing FISH for X and Y chromosomes. 
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ABSTRACT 

Fetal cells present in the maternal circulation are a potential source of fetal DNA that can be 

used for the development of a prenatal diagnostic test. Since their Ilumbers arc vel)' low, 

amplification of fetal cells has been discussed for a long time. So far, most studies have 

focllssed on culturing fetal erythroid cells. In this study, wc evaluated whether limiting 

numbers of fetal hemopoietic progenitor cells present in an excess of maternal cells wcre able 

to overgrow the maternal component. Thercfore, we lIsed a model system in which limited 

numbers of male CD34+ umbilical cord blood cells were diluted in 400,000 female CD34+ 

peripheral blood cells. The number of xv positive cells derived from umbilical cord blood 

was detcrmined lIsing two-color in si(1I hybridization with X and Y chromosomal probes. \Ve 

demonstrated a ISOO-fold relative expansion of malc umbilical cord blood cells ovcr the 

peripheral blood component after 3 weeks of liquid culture, which also corresponded to the 

extent of expansion of CD34+ cclls derived from 20-week fetal blood. However, application 

of the same culture protocol to maternal blood samples obtained at 7-16 weeks of gestation 

showed no preferential growth of tetal hemopoietic progenitor cells. This study, therefore, 

suggests that fetal primitive hemopoietic progenitor cells do eithcr not circulate in maternal 

blood before 16 weeks of gestation, or require different comhinations/concentrations of 

c)10kines for their in vi(ro expansion. 

INTRODUCTION 

Thc development of a non-invasive prenatal diagnostic test using fetal blood cells that leak 

through the placenta into the maternal circulation would eliminate the small but significant 

risk to the fetus associated with more traditional procedures like chorionic villus sampling 

and amniocentesis. Fetal cell types that have been isolated tl"ol11 maternal blood include 

nucleated red blood cells (Bianchi et al., 1990), lymphoc)1es (Herzenberg el al., 1979), 

67 



Chapter 3 

granulocytes (Wessman el al., 1992). trophoblast cells (Goodfellow and Taylor, 1982), and 

hemopoietic progenitor cells (Bianchi ef al., 1996b; Little c/ al., 1997). However, frequencies 

of these cell types arc velY low. Factors that may influence these frequencies include the type 

of fctal cell analyzed, gestational age at the time of sampling and the accuracy of methods to 

enrich, identify, and quantify the fetal target population. The incidence of fetal cells in 

maternal blood has been reported to increase after chorionic villus sampling (Jansen ef al., 

1997), in patients with preeclampsia (Holzgrcvc e/ (fl., 1998; La ef af., 1999; Jansen el af., 

submitted), and in pregnllllcies in whkh the tetal and placental kal)'olype were nbnormnl 

(Elias e( ai., 1992; Ganshirt-Ahlel1 e( ai., 1993). 

Despite all efforts to develop enrichment procedures such as tluorescence-activated cell 

s0l1ing (FACS) (Bianchi e( ai., 1990, 1996a) and magnetic cell s0I1illg (MACS) (GanshiI1-

Ahlert el al., 1992; Jansen el al., 1999) that would increase the delectability of fetal cells in a 

maternal blood sample, the number of fetal cells recovered still remains vel)' low. 

Considerable progress has been made in the qualitative assessment of fetal cell populations 

found in maternal peripheral blood. However, more information is needed regarding the 

enumeration and characterization of fetal cell populations that circulate during pregnancy. 

The question as to whether fetal cells present in maternal blood samples ean be in vitro 

expanded has been partially resolved by several investigations. Lo ct al. (1994) were the first 

who were able to eulture fetal el)1hroid cells from maternal peripheral blood by exploiting 

the growth advantage of fetal cells over maternal cells. Also, the successful prolitcralioll of 

fetal committed el)1hroid progenitors (CFU-E, M-BFU-E) derived fi'olll maternal blood has 

been described (Valerio e( ai., 1996, 1997). However, two reccnt repolis (Chcn e( ai., 1998; 

Han et al., 1999) have cast doubt on the proposition that maternal blood reliably contains 

fetal c1onogenic el)1hroid cells. Recently, Little el al. (1997) were able to expand FACS­

s0l1ed CD34+ hemopoietic progenitor cells derived from maternal blood samples. They 

showed a 2-5 fold expansion ofCD34+ fetal cells atter 5 days of culture. 

So far, most attention has been focussed on the amplification of fetal el)1hroid progenitors. In 

the present study, we evaluated the usefulness of the expansion of tctal hemopoietic 

progenitor cells derived from maternal blood samples for the development of a lion-invasive 

prenatal test. Since it is known that after ivlACS separation fetal cells arc otten contaminated 

with an excess of maternal cells, we aimed at selectively expanding tew fetal cells as 

compared to the maternal component. Therefore, limiting numbers of CD34+ cells derived 

from male umbilical cord blood (UCB) were spiked in an excess of CD34+ cells dcrived 

from female peripheral blood (PB). Cells were cultured for lip to three weeks, and the Ilumber 

of XY cells was determined evel), week by fiSH analysis using X and Y chromosome­

specific probes. In order to evaluate whether the expansion capacity of hcmopoietic 

progenitor cells derived from umbilical cord blood was comparable with growth profiles of 

fetal cells in maternal blood, we also examined the culture characteristics of CD34+ cells 
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derived from fetal blood (FB) smnples. FB samples were obtained through cordocentesis at 

20 wceks of gestation. Below that age, the success rate of this technique becomes markedly 

reduced. However, in order to develop a non-invasive prenatal diagnostic test lIsing fetal cells 

in maternal blood, it is important to obtain maternal blood samples as early as possible. Fctal 

hemopoiesis starts in the yolk sac between days 16 and 19 followed by hepatic hemopoiesis 

at approximately 6 weeks, indicating that tetal hemopoietic progenitor cells may be present in 

the maternal circulation 1'1'0111 week 3 of gestation (Metcalf and Moore, 1971). In the present 

study, maternal blood samples were obtained during the first and early second trimester of 

pregnancy, i.e. at 7-16 weeks of gestation, and the samc protocol was used for the expansion 

and detection of fetal hemopoietic progcnitor cells. 

MA TERIALS AND METHODS 

mood samples 

Male umbilical cord blood (UCB) samples (n=5) were obtained from placentas of full-tenn 

normal pregnancics, while peripheral venous blood (PB) samples (n=4) were collected from 

female non-prcgnant volunteers (nulligravidae). For spike experiments, two to three UCB or 

PB samples were pooled in order to obtain enough CD34+ cells after MACS separation. 

Fctal blood (FB) samples (n=2) were obtained from discarded material after medically 

indicated cordocentesis at 20 weeks of gestations. FB samples at the target fetal age of 

between 7 to 16 weeks were unavailable because of the technical impossibility of umbilical 

cord sampling at this fetal age. 

A total of 100 pregnant women who came to the Department of Obstetrics and Gynecology 

for prenatal diagnosis because of advanced matcrnal age (~ 36 years) were enrolled in this 

part of the stully. Thil1y-tive of these 100 pregnant women were carrying a female fetus and 

were used as negative controls for FISH analysis. The other 65 women were canying a male 

fetus. The sex of the fetus was determined by c)1ogenetie analysis on semi-direct villus 

preparations or on amnioeytes. Pregnancy duration varied between 7 and 16 wccks of 

gestation, as calculated from the tirst day or the last mellstrl1a~ period. Maternal blood 

samples were takcn according to a cross-sectional study llesign at: 7-11 weeks of gestation 

(group A; 11=20) at the time of gcnetic counseling; 11-14 weeks of gestation, either before 

(group B; n=I4) 01' after chorionic villus sampling (group C; n=21): or at 15-16 weeks of 

gestation prior to amniocentesis (group D; n=IO). The study protocol was approved by the 

local Ethics Review Board, and all blood samples were obtained with patients' inrol1lled 

consent. 

Blood samples were collected in vaclltainers contallllllg ethylenediamine-tetra-acetic acid 

(EDTA) and were dilnted I: I with phosphatc-bnffered saline (PBS). Mononuclear cells were 
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isolated by ricoll-Paquc-Pllis (1.077 glllll; Pharmacia Biotech, LJppsala, Sweden) density 

'grauient centrifugation at 750 g for 20 minutes. Cells were washed twice in Hanks' balanced 

salts (HBSS; Life Technologies B.V., Breda, The Netherlands). The number of viable cells 

was calculated using a BUrkeI' counting chamber. Cells isolated from umbilical cord blood, 

fetal bloou and maternal blood samples were cl)'opreservcd in Iscove's modified Dulbccco's 

medium (IivIDM; Life Technologies B.V., Breda, The Netherlands) containing 20 % fetal calf 

serum (FeS) and 10 % dimcthylsulphoxidc (DivISO) in liquid nitrogen until further analysis. 

J\Iagnelic Acal'uted Cell Sorting (MACS; 

Isolation of CD34+ cells was performed as described by the manufacturer lIsing a 

CD34 progenitor cell isolation kit (Miltenyi Biotec, Bergisch Gladbach, Germany). 

The numbcr of viable cells in the CD34+ fraction was calculated using a BUrkeI' counting 

chamber. Pmi of this ti-action was used for liquid culture as well as for fluorescence in silll 

hybridization (FISH). For the spike experiments, 3, 10, 36 or 71 male CD34+ UCI3 cells were 

diluted in 400,000 female CD34+ PI3 cells. CD34+ derived from FB samples were only in 

vilro expanded and the number of nucleated cells was determined evel), week. 

The perccntage of CD34+ cells in the un separated sample ns well as the purified 

CD34+ fraction was determined by Iluorescence-nctivated cell sOliing (rACS) analysis. The 

percentage ofCD34+ cells in the purified fraction varied between 60-90 %. 

Liquid cult lire (?lCDJ.f 1 cells 

The CD34+ cell tj'actions were seeded in standard six-well plates and cultured as described 

previously, with some modifications (Piacibello el aI., 1997; Rappold e/ al., 1999). Brielly, 

CD34+ cells were cultured at 37°C and 10 % CO2 for 1 to 5 weeks in Stem Cell Growth 

Medium (SCGivl; Boehringer Ingelheim, Heidelberg, Germany) containing 20 % FCS, 

thrombopoietin (tpo; 10 ng/ml; a generous gin from Gencntech, South San Francisco, CA, 

USA), nt3-ligand (50 nglml) and stem cell factor (SCF; 100 nglml; both kindly provided by 

Amgen, Thousand Onks, CA, USA) and IL-6 (l00 ng/ml; a gift from Genetics Institute, 

Cambridge, MA, USA). Both tpo nlld Ilt3-ligand were added twice a week. Every week, the 

number of viable nucleated cells wns determined lIsing a BUrkeI' counting dmmber and part 

orthe cells were treated for FISH analysis, wherens rest of the cells were cultured fllliher. All 

CD34+ cell fmctions were nnalyzed for the presence of X and Y chromosomes without prior 

knowledge of the fetnl km)'otype or donor origin to avoid sampling bias. 

Fluorescence in situ hybridization (FISH) 

Cells were treated with 75 mivl KCI, incubated for 18 minutes at 37 DC, fixed in 

methanol:acetic acid (3: I) and stored at -20 HC until fmiher analysis. Cells were dropped 

onto VectabondThI-coated slides (Vector Laboratories, Inc, Burlingame, CA, USA) nnd 
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air-dried. The number of nucleated cells nnalyzed per sample per slide varied from 

10-20xI0'. Slides were pre-treated with pepsin (l00 flg/ml) in 0.01 N HCI at 37 "c for 

15 minutes, followed by postfixation in 3.7 % formaldehyde in PBS for 15 minutes. 

Subsequently, slides were denatured for 5 minutes in 70 % formam ide (pH 7.5) in 2X SSC at 

75°C, followed by dehydration in 70 %, 90 % and 100 % ethanol for 1 minute each. 

Two-color FISH was performed lIsing a SpcctrumOrangc-labeled alpha-satellite probe 

(DXZl) tor centromere region Xpl1.1-qll.l and a Spectrul11Green-labeled satellite III probe 

for the Yq12 region (Vysis, Downers Grove, IL, USA). Samples were hybridized overnight at 

37°C in a humidified chamber. 

Slides were post-washed at 70 "c in O.4X SSC/0.3 % NP-40 (pH 7.2), followed by 

5-60 seconds in 2X SSC/O.1 % NP-40 (pH 7.2) at room temperature. Slides were mounted in 

Vectashield mounting medium (Vector Laboratories, Inc., Burlingame, CA) containing DAPI 

(4', 6-diamidino-2-phenylindole) and analyzed under a Leica Aristoplan fluorescence 

microscope lIsing a triple band-pass filter block. Images were captured using a Xybion CCD 

24-bit color camera with a Genetiscan ProbeMaster system and MacProbe 2.5 image analysis 

software (PSI, Chester, UK). 

Since only part of the cultured cells was used for FISH analysis, the absolute number of 

XY cells during 1-5 weeks of liquid culture was calculated. 

RESULTS 

In vitro expansion (?f'CDJ.f+ cells deriredJhnn umbilical cord blood, peripheral blood and 

fe/al blood 

CD34+ sOlied cells derived fi'om malc umbilical cord blood (UCB), female peripherol blood 

(PB) and fetal blood (FB) at 20 weeks of gestation were analyzed for their growth in liquid 

culture (figure I). CD34+ cells derived from PB samples did not show any significant growth 

during 3 to 5 weeks of liquid culture. In contrast, CD34+ cells derived from UCB as well as 

PB showed an up to 4-10g fold increase of nucleated cells after 5 weeks of liquid culture, 

indicating that UCB and FB CD34+ cells exhibit similar expansion capacities, and theretore, 

fetal cells derived from maternal blood may show the same growth profiles. 

Spike experimenl.\' (?lmale umbilical cord blood cells infi!11lllle peripheral blood cells 

In ordcr to investigate whether extremely small numbers of fetal cells can be selectively 

expanded in maternal blood, we used a model system in which 3, 10,36 or 71 male CD34+ 

UCB cells were diluted into 400,000 female CD34+ PB cells and culturcd in liquid culturc. 

Evel)' week, the number of nucleated cells and the number of XY cells present in evel), 
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Fold expansion of CD34+ cells from peripheral blood (PO). umbilical 
cord blood (UeB) and fetal blood (FB) during liquid culture, The 
starting concentration of PB, UCB and FB were 40xIO~, 25x104 and 
5xlO~ CD34+ cells per milliliter of culture, respectively. Each line tor 
UCB and PB corresponds with two to three pooled samples. 

mixture was determined using FISH for X and Y chromosomes (figure 2). For each sample, 

the number of nuclei analyzed by FISH betore and after liquid culture ranged between 

IO-20xI04
, All four samples showed at least a 250-fold increase ill the absolute number of 

XY cells (UCB) pCI' 10' XX cells (PB), which was most abundant during the first week of 

liquid culture. Even 3 male CD34+ UCB cells (dilution 1) were able to expand up to 

1500-fold after 3 weeks of culture. This suggests that even vel)' low numbers of fetal 

CD34+ cells if present in maternal blood can be selectively expanded over adult female 

CD34+ PB cells, which would filcilitate their detection. This is further supported by the fact 

that we observed comparable levels of expansion of CD34+ cells derived from 20-week FB 

(figure 1). 

/11 vitro culture and detection oJletal hemopoietic progenitor cells in maternal blood 

On the basis of the above described findings, we investigated the possibility to detect male 

fetal hemopoietic progcnitor cells in peripheral blood fi'om pregnant women by expanding 

their relative numbers during liquid culture. Maternal blood samples from pregnancies of 

which the fetal km)'otypc was 46, XY, wcre obtained from 65 pregnant women at 7-16 weeks 

of gestation. CD34+ cells were isolated and cultured in liquid culture during 0 to 5 weeks 

(table 1). For each sample, the number of nuclei analyzed by FISH ranged between 
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Number of XY positive cells per 10--1 XX cells during liquid culture of 
CD34+ cells in cell mixtures of umbilical cord blood (UCR) and 
peripheral blood CPS). Dilution I, 2, 3 and 4 cOITespond to 3, 10, 36 
and 71 mnle CD34+ UCD cells, respectively, diluted into 400,000 
female CD34+ PH cells before liquid culture. 

1O~20xto4. In group A, B, C nnd D, XY positive cells could be detected eithcr before or 

duriug liquid eulture iu 11 out of20 (55 %), 3 out of 14 (21 %), 12 out 01'21 (57 %) aud 2 out 

of 10 (20 %), respectively. In all other samples in the four differeut groups no XY positive 

cells could be detected either before or during liquid culture. The number of XY cells before 

liquid culture varied from 0 to 11.1 and in most of the samples no XY cells could be detected. 

In group A, B, C and D, XY Ijositive cells could be detected before liquid culture in 8 out of 

20 patients (40 %),2 out of 14 (14 %), 2 out 01'20 (10 %) and lout of 10 (10 %) patieuts, 

respectively. After I week of cell culture, the num!:.er of XY cells ranged from 0 to 16.7 XY 

positive cells in the four different groups, whereas in group B no XY positive cells could be 

detected. In group A, C and D, XY positive cells were fOllnd in '-lout of 7 (57 %), 7 out of 8 

(88 %) and lout of4 (25 %) patients, respectively. There W[lS a significant difference for the 

presence of XY cells between group Band Caner 1 week of liquid culture (Fisher's exact 

test, p=0.005). The number of XY positive cells varied from 0 to 22.2 XY positive cells 

aHer2 weeks of culture. XY positive cells were detected ill group A, Band C in lout of 8 

(12.5 %), lout of 5 (20 %) and 3 out of 9 (33 %) patients, respcetively. No XY cells were 

found in the four patients analyzed in group D. After 3 weeks of culture of CD34+ cells, the 

number of male cells varied from 0 to 22.2, with the highest number in a patient from 

group A. In group A and C, 2 out of 3 (66 %) and lout of 4 (25 %) patients showed 
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Tuble 1 FISH analysis ofCD34+ cells before find during liquid culture 

Group.! Number of cultured Number of Xl' cells at week 
patient number (:03<1+ cells (xlO~) 

0 2 3 4 5 

Al 14.0 1.0 
A2 4S.0 1.0 
Al 13.0 6.5 3.2 
A4 17.5 5,4 0.0 
AS 6.0 8.0 0.0 
A6 17.0 0.0 5.1 
A7 2.0 2.2 n.u. 0.0 
AS 15.0 2.5 n,d. 0.0 
A9 11.0 0.0 5.6 11.1 0.0 
A10 38.0 0.0 0.0 0.0 IO.t) 0.0 0.0 
All 23.0 5.9 1.0 0.0 22.2 20.0 20.0 

XYneg 23.3 (6-56)* 9 0 1 0 0 0 

III 7.0 6.9 0.0 
H2 7.0 0.0 n.d. 3,4 0.0 
Bl 37.0 11.1 0.0 0.0 0.0 0.0 0.0 

XYncg · 19.7 (9-55)* 11 3 3 0 0 

e1 28.9 4.3 
C2 31.0 1.0 
Cl 3.0 0.0 6.0 
C4 19.0 0.0 4.8 
C5 15.0 0.0 5.7 
C6 3.3 0.0 6.6 
C7 17.0 0.0 n,d, 7.0 
CS 9.0 0.0 n.tI. 7.1 
C9 60.0 0.0 \6.7 22.2 0.0 
C10 14.0 0.0 5.6 0.0 0.0 
ell 37.0 n.d, n.u. 0.0 2.6 0.0 
el2 32.0 0.0 2.4 0.11 0.0 0.11 0.0 

XYneg · 16.1 (4-24)' 9 3 0 0 0 

D1 lU,O 1.3 n.d. 0.0 
D2 37.0 0.0 2.4 0.0 0.0 0.0 0.0 

XYneg · 12.8 (2-20)* 8 1 2 0 0 

C034+ cells wcre isolated from 7-2'2 Illl rnatemal blood and cultured for I to 5 wccJ\s, Weekly, part urlhe cells 

were collected and tlw absolute number of XY positive cells was determined. For each sample, the number of 

nuclei analyzed by FISH ranged between IO-20xlO~. Only samples with detectable Xl' cells either before or 

during liquid culture are presented. Group A maternal blood samples were collected <It 7-11 \\'1.'1.'1\" of gest<ltion; 

group B amI C s<lmples <It 11-14 weeks of gestation, betore or aner chorionic villus sampling, respectively; and 

group 0 samples at 15-16 weeks of gestation. All mntcmal blood sampll's were deri\'ed from wOlllen cllITying a 

male fetlls . . 
lHulIber ofsnmpics without dctcctnble XY positi\'e c",'II~; * mean number of cultured CD34+ cells (range); n.d. 

not determined. 
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XY positive cells, respectively, whercas no male cells were found in group Band D. After 

4 and 5 weeks of liquid culture, only in group A, in one out of two patients 20.0 XY positive 

cells were found. These results illllicate that fetal hemopoietic progenitor cells, if present at 

all, may not preferentially expand over the maternal CD34+ component, which is in contrast 

with the observations in the spike experiments. 

As negative controls to determine the background level for FISH analysis, a total of 

39 peripheral blood samples from 35 control patients eanying a female fetus and 4 female 

non-pregnant volunteers (nulligravidae) were analyzed for the presence of male cells. From 

all 39 blood samples CD34+ cells were isolated. CD34+ cell fractions from 20 pregnant and 

4 non-pregnant women were cultured during 0 to 3 weeks, whereas from the other 15 samples 

only FISH analysis was performed after MACS isolation. In none of the non-pregnant 

samples male cells could be detected, whereas in 2 out of 35 pregnant wOlllen (5.7 %) 

XV positive cells were found; 3.3 XY cells were detected all week 0 in one patient and 

5.2 XY cells werc detected after 2 weeks of liquid culture in an other patient. In both cases a 

prior male pregnancy was ascel1ained. These data suggest that the presence of male cells in 

female pregnancies may be caused by aspecitic binding of the Y chromosomal probe or 

might be the result of persisting fetal cells from earlier pregnancies. 

DISCUSSION 

The development of a non-invasive prenatal diagnostic test lIsing fetal cells present in the 

maternal circulation is hampered by the low ti'cquency of these cells in maternal blood. The 

idea to increase the number of fetal cells by amplification of progenitor cells has been 

discllssed for a long time. In most recent studies, the expansion of fetal el,)1hroid cells is 

described (Lo c/ (//., 1994; Valerio e/ (//., 1996, 1997; Chell e/ (//.,1998; Hall c/ (//.,1999), 

whereas less is known about the amplification of fetal CD34+ progenitors (Little el al., 

1997). In the present study, we evaluated the lIsefulness of ill vitto expansion of CD34+ fetal 

cells isolated IhHll maternal bloou samples for diagnostic purposes. Two major methods of 

cell separation enable fetal cell isolation lI'om maternal blood: tluorescence activated cell 

sorting (F ACS) (Bianchi el al., 1990) and magnetic activated cell sorting (ivIACS) (Ganshirt­

Ahlert ct 01.,1992), Both isolation techniques have the disadvantage that the purified lI'action 

still contains many maternal cells. In order to evaluate whether limited numbers of fetal 

CD34+ cells present in an excess of maternal cells are able to overgrow the maternal 

component, we lIscd a Illodel system in which CD34+ cells derived frolllillale umbilical cord 

blood (UeB) were diluted up to 3 in 400,000 with CD34+ cells derived t1'om non-pregnant 

female volullteers (nulligravidae) and in vitro expanded in liquid culture. We showed that 

even vel)' low numbers of CD34+ cells derived from UCB (3 XY positive cells) diluted into 
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an excess of PB cells were able to expand to high cellilumbers, corresponding to the il1l'il}'o 

expansion ofCD34+ nucleated cells derived from undiluted UCB samples. As the magnitude 

of in \'itro expansion of CD34+ cells derived from 20-week FB samples corrcspondcu to the 

growth of hemopoietic progenitor cells derived from UCB, it is suggested that the grO\\1h 

capacities of fetal hemopoietic progenitor cells of between 7 and 16 weeks of gestationnl age 

may show similar expansion patterns, Consequently, the limHcd numbers of fetal 

hemopoietic progenitor cells present in maternal blood samples may show the same growth 

profiles. In cuntrast to the tlndings in the model system, we were not able to show abundant 

growth of fetal male CD34+ cells isolated from maternal blood samples. In only a few 

samples in group A and C, cell grO\\1h of male fetal cells could be detected. These results are 

in concordance with the observations described by Little et al. (1997). Using an other 

e)10kine combination, they also showed a limited expansiun of C034+ fetal cells derived 

from 10-l3 week maternal blood samples after 5 days of cuhure, but in most cases (10 out 

of IS (55 %)) no XY cells could be detected. 

In many studies it has been investigated at what time in pregnancy the number of fetal cells 

has reached its maximum. Relevant information regarding the frequency of fetal nucleated 

red blood cells (NRBCs) in maternal blood is contradictOlY, and the frequency of fetal 

NRBCs Was rep0l1ed to villy significantly among individuals and throughout the three 

trimcstcrs of pregnancy (Hamada et (fl., 1993; Siunga-Tallberg eI al., 1995; Smid et al., 1997; 

Kuo, 1998). Fetal cell frequency in maternal blood is influenced hy a number of biological 

parameters that are mainly unknown. Gestational age seems to be one of the factors involved. 

The optimal period during pregnancy for detecting circulating fetal cells remains unclear. 

Therefore, we have analyzed maternal blood samplcs of different gestational ages, val)'ing 

between 7 and 16 weeks of gestation (group A, B and D). In most cases no male fetal cells 

could be detected, whereas in 28 out of65 maternal blood samplcs of women can)'ing a male 

fetus XY positive cells could be observed. However, there was no statistically significant 

increase in the number of patients with one or more XY positive cells between 7 and 11 

weeks of gestation (group A) compared to patients of later gestational ages (group B and D). 

This suggests that the number of fetal hcmopoietic progenitor cells present in blood 11'0111 tirst 

trimester pregnant women might 110t be high enough or that these cells are even absent in 

1110st pregnant women. 

Another question concerns the stability of fetal cell properties. Are fetal progenitor cells 

present in the maternal circulation cionnl and possess unchangeable characteristics or are they 

transient and respond to a changing environment? Until now, it is nol known whether fetal 

cells continue to express the same marker antigens in the new maternal environment after 

crossing the placenta, and respond to similar c)1okines. The cytokine combination used in 

this study has previously been shown to be capable of extensive amplification and 

self-renewal of human primitive hemopoietic progenitor cells derived ti'om umbilical cord 
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blood (Piacibello e/ al., 1997; Rappold e/ al., 1999). However, other, perhaps yet unidentified 

(combinations or concentrations ot) grO\\1h fnctors Illay induce n more vigorous proliferative 

response, promoting the in \'itI'O expnnsioll of fetal cells isolated from maternal blood 

samples. 

Another 1~lctor that intluences the incidence of fetal cells in maternal blood is chorionic villus 

sampling (CVS), which has previously becn rcported to cause a fcto-maternal transfusion of 

fetal NRBCs (Jansen el al., 1997). The qucstion arises as to whether it may also havc an 

etfect on the number of fetal hcmopoietic progcnitor cells in the maternal circulation. 

Although there was a significant incrcnse of male cells aftcr one wcek of liquid culturc in 

samples obtained after chorionic villus sampling (CVS)(group C) compared to before CVS 

(group B), in most of the post-CVS samples the Ilumber of male fetal hemopoietic 

progcnitors docs not markedly exceed the number of male cells in blood samples obtaincd 

before any invasive procedure (group A, B and D). 

Male cells were found in 2 out of 35 pregnant women eallying a female fetlls. In both cases a 

prior male pregnancy was confirmed. Therefore, these cells may either represent 

H1lsc-positivcs dlle to non-specitic binding of the Y chromosomal probe to non-target 

sequcnces, or rcpresent residual fetal cells persisting from prior male pregnancies, since fctal 

progcnitor cells have been rep0l1ed to circulate in nwternal blood as long as 27 years after 

birth (Bianchi el al., 1996b). FlII1hermore, a fcto-maternal transfusion may OCClll' at the time 

of bh1h. This may establish fetal microchimerism in the mother, which has been reported to 

be implicated in the subsequent development of diseases, such as scleroderma that are 

common in womcn (Art lett et (fl., 1998; Nelson, 1998; Evans el al., 1999). Therefore, it is 

important to know whether fetal cells might persist from prior pregnancies, not only for the 

development of n non-invasive prenatal diagnostic test, but also to evaluate the 

immunological consequences of feto~maternal transfusion. 

Until now, most attention has been focllsed all fetal NRBCs which have been isolated lIsing 

antibodies against membrane-bound markers (CD7l, glycophorin A) or intracellular antigens 

(hemoglobin F) (l.oken e/ al., 1987; Bianchi e/ al., 1990; Zheng e/ al., 1995). The number of 

fetal NRBCs in maternal blood is vel)' low, and expansion of these cells might enhance the 

detectability of this cell type. A previously reportcd cell culture protocol for erythroid cells 

(Janscn el al., 1999; von Lindern el al., 1999) was used for CD71+ cells in a spike 

cxpcriment similar to that used for hemopoietic progenitor cells described in this paper (data 

not shown). CD71+ cells dcrived from male UCB wcre dilutcd lip to 1 in 400,000 in 

CD71+ cells derived from female PB samplcs. This ccll mixture was culturcd according to 

the previously described el)1hroid cell culture protocol (Jansen el al., 1999; von Lindern ef 

01., 1999) and the number of XY positive cells was determined weekly. However, preferential 

expansion of CD71 + UCB cells as shown for CD34+ UCB cells could not be observed, 

suggesting that the expnllsion potential of fetal NRBCs in maternal blood samples is not 
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comparable with the expansion potential of hemopoietic progenitor cells, and therctbrc~ fetal 

NRBCs may not be able to overgrow the excess of maternal cells. These results were similar 

to those reported by others (Chell ef a/., 1998; Hall ef a/., 1999), who rccently showed that 

culturing of fetal cl)1hroblasts derived from contaminating maternal blood mainly produced 

erythroid colonies derived from maternal erythroid progenitors, 

In summary, expansion of retal cells isolated n'om maternal blood samples for analytical 

purposes is highly desirable given the rarity of these cells in the maternal circulation. 

Amplii1cation of the number or fetal cells llsing cell culture protocols might facilitate 

non~in\'asivc prenatal detection of genetic anomalies. In the current study, the described 

protocol for the expansion of hemopoietic progenitor cells resulted ill a dramatic expansion of 

even vel)' few CD34+ UCB cells spiked into PB samples, which also corresponded to a 

similar marked increase in the numbcr of CD34+ cells from 20-wcck fetal blood. However, 

the expansion of fetal CD34+ cells dcriveu from 7-16 week matcrnal blood samples did not 

result in signifil:ant growth of these rare cells and therdorc is not yet suitable for uiagnoslic 

purposes. 
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The presence of fetal cells in maternal blood is supposed to be the result of a feta-maternal 

transfusion at the placental interface. It has previollsly been rcpol1cd that the introduction of a 

biopsy needle into placental tissue to aspirate chorionic villi via the transabdominal route 

might induce a feta-maternal transfusion. Such a transfusion has been demonstrated by 

elevated levels of maternal serum alpha-fetoprotein after chorionic villus sampling. In this 

chapter, the effect of an invasive procedure like chorionic villus sampling was investigated by 

analyzing the number of fetal nucleated red blood cells in the maternal circulation before and 

aftcr transabdominal chorionic villus sampling. 

f) John Wiley & Sons Limited: reproduced with pemlission. 
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ABSTRACT 

Fetal cells are present in the circulation of pregnant women and can be isolated lIsing density 

gradient centrifugation and magnetic cell sorting, In the present study~ maternal cell 

preparations were depleted for CD4S- and CD14-positivc -cells and enriched for 

CD71-positive celis, The number of fetal nucleated cells was determined using fluorescence 

in situ hybridization for X and Y chromosomes, Analysis of maternal blood samples taken 

before and atter transabdominal chorionic villus sampling (TA-CVS) showed an increase in 

the number of fetal cells in 10 out of 19 male pregnancies after the invasive procedure. This 

cellular transfllsioll was found to correlate with elevated maternal serum alpha-fetoprotcin 

levels, TA-CVS-induced cellular transfusion Illay form a good in vivo system to optimize 

fetHI cell isolation procedures and to study fetal cell dynamics and characteristics. 

INTRODUCTION 

Cells of fetal origin have been isolated from blood of pregnant womcn and can be used tor 

non-invasive prenatal detection of genetic abnormalities. Cell types isolatcd from maternal 

blood include nuclcated rcd blood cells (NRBCs) (Bianchi e/ al., 1990), lymphoc)1es 

(I-Ierzcnbcrg et aI" 1979)~ granuloc)1es (Wessman et (fl.~ 1992)~ and trophoblast cells 

(Goodfellow anti Taylor, 1982), Attention has been focused primarily on NRBCs as they 

express both mel1lbrane~bollnd markers (CD71, glycophorin A) and intracellular antigens 

(hemoglobin f) which aliow their isolation and identification (Loken et ai" 1987; Bianchi et 

al., 1990; Zheng e/ al., 1995). 

The occurrence of fetal NRBCs in maternal blood is a rare event, and extensive enrichment 

and purification procedures are necessary to detect these cells. Isolation tcchniqucs currcntly 
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available have succeeded in the isolation of only a vel)' small number or fetal cells in SOI11;': of 

the pregnancies investigated (Reading et (1/., 1995; Lewis et aI" 1996), Improvements in 

isolation technology that will result in a larger number of fetal cells me necessaI)' to allow the 

lise of these cells for diagnostic purposes. 

The presence of fetal cells in the maternal circulation is supposed to be the resull of a 

feto-maternnltransfusion (FMT) at the placental interface (Price el a/., 1991; Bianchi ef a/., 

1992), This FMT has also been postulated to occur as a consequence of transabdominal 

chorionic villus sampling (TA-CVS), which was shown to induce an increase in maternal 

serum alpha-fetoprotein (MSAFP) levels (Los el al., 1989, 1993; Smidt-Jensen el al., 1993; 

Brezinka el al., 1995), In the present study, we investigated whether the transfer of fctal 

plasma components after TA-CVS is accompanied by a concurrent tllcrcase in the number of 

fctal nucleated cells in the matclllal circulation. 

MA TERIALS AND METHODS 

Patient samples 

Peripheral venous blood samples (13-18 1ll1) were obtained 1'1'0111 32 pregnant women 

(11-14 weeks of gestation) ref cITed for prenatal diagnosis because of advanced maternal age 

(11=29), familial Down syndrome (n=2), or a previous child with congenital abnormalities 

(11=1). Mean maternal age was 37 years. Two blood samples were taken fi'om each patient, 

the first one immediately before TA-CVS, the second 5-20 minutes after the invasive 

procedure. Blooti samples were collected into vacutaincrs containing cthylenediaminetclra­

acetic acid (EDTA). TA-CYS was performed according to Jahoda el al. (1990). In all patients 

a single needle puncture was needed to obtain 5-30 mg of chorionic villi. Fetal kaJ)'ot)'ping 

was performed on semi-direct villus preparations, All samples were obtained with the 

patient's intollned consent. 

Cell prepm'afiOll 

Venous blood samples were diluted to 30 ml with phosphate-buffered saline (PBS) and 

l11onol1uelcated cells were isolated by Ficoll-Paque-Plus (1.077 glllll; Phannaeia Biotech, 

Uppsala, Sweden) density gradient centrifugation at 750 G for 15 minutes. Cells were washed 

twice with PBS and centrifuged at 250 G for 10 minutes. For each sample, human serum was 

collected and stored at - 80 {IC until further analysis. 

A /plra-feloproteil1 meas IItemen/ 

["Iaternal serulll AFP UvISAFP) was measured with Amerlex ~\'I second-trimester radio­

illll11ullo-assay (RIA) kits for AFP (Kodak) and was expressed in kJU/1. 
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l\Iaglletic (fctiwlfed cell sorting (J\IACSj 

Fetal cells were isolated according to a procedure described by BUsch et al. (l994) with 

modifications. Briefly, cells were labeled for 15 minutes on ice with CD45-PE 

(50 rdl20x106eells; KC 56, T-200 (lgG1), Coulter, Kretcld, Germany) in 200 rd PBNHS 

(PBS containing I % bovine serum albumin (BSA), 0.01 % sodium azide (NaN3), and 10 % 

autologous serum), washed once in PBNHS, and labeled with 30 ~d of CDl4-eonjugated 

mierobcads and 30 ~tI of rat anti-Illollse IgGI-conjugated microbeads (Miltenyi Biotec, 

Bergisch Gladbach, Germany) in 200 pi of PBNHS at 4 "c for 15 minutes. Labeled cells 

were washed once ~n PBNHS, resuspended in 500 ~tI wash butTer (PBS containing I % BSA, 

0.01 % NaN,. aud 5 mM EDTA), and applied to a pre-separation filter (30 fun; CLB, 

Amsterdam, The Netherlands) in order to obtain a single cell sLlspension. The labeled cell 

~uspension was applied to an AS-depletion column (Miltenyi) using a 26G needle as flow 

resistor. The negative fraction was applied again to the column in order to achieve an optimal 

depiction, followed by elution with 3 1111 wash buffer. After an additional wash using a 24G 

needle, the column was removed from the magnetic device and CD45- and CDl4-positive 

cells were collected, 

The negative fraction was labeled tor 15 minutes on ice with CD71-FITC (10 ~d/l06 cells; 

100 pg/ml; LOl.l, IgG2a, Becton Dickinson, San Jose, CA, USA) in 200 ftl of PBNHS. 

Cells were washed once in PBNHS and labeled tor 15 minutes at 4 °c with 30 pi of rat 

anti-mouse IgG2a+b-conjugated microbeads (Miltenyi) in 200 ~tI of PBNHS, and washed 

again in PBNHS. Labeled cells wcre rcsllspended in 500 ~ll wash butTer and applied to a 

pre-separation tilter (30 pm; CLB). The cell suspension was added to a mini MACS column 

(type MS; Miltcnyi) and the non-magnetic cell fraction was collected, After removing the 

column 11'0111 the magnet, the CD71+ cell fraction was eluted. 

The number of viable cells in each fraction was calculated before and after loading the 

MACS column using a BUrkeI' counting chamber. 

Fluorescence in sUu hybridization (FISH) 

Cell fractions were treated with 75 mM KCI, incubated tor 18 minutes at 37°C, fixed in 

methanol: acetic acid (3:1), and stored at _20°C until further analysis. Cells Were dropped 

onto 3-aminopropyltriethoxysilane (2 % in acetone) -coated slides and air-dried, Slides were 

treatcd with 70 % tonnamide (pH 7.0) in 2X SSC, washed in PBS, and dehydrated in 70 %, 

90 % and 100 % ethanol tor 5 minutes each. Atter heating the slides tbr 10 minutes at 80°C, 

cells were pretreated with pepsin (lOO ~lg/ml) in 0.01 N HCI at 37 llC tor 15 minutes, 

followed by post-fixation in 3.7 % formaldehyde in PBS for l5 minutes. Subsequently, slioes 

were denatured for 5 minutes in 70 % f0I111amide (pH 7.5) in 2X SSC at 75°C, followed by 
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dehydration in 70 %, 90 % and 100 % ethanol for 1 minute each. Slides were prewanned at 

45 t1C until probe was applied. 

Two~color FISH was performed using a SpcctrumOrange labeled alpha-satellite probe 

(DXZI) for centromere region Xpll.l-qll.l and a SpeetrumGreen labeled satellite III probe 

for the Ygl2 region (Vysis, Downers Grove, fL, USA). The probes were denatured for 

5 minutes at 75°C and hybridization was allowed to continue overnight at 42 (lC in a 

humidified chamber. 

Slides were posHvashcd three times at 46 nC in 50 % formam ide in 2X sse (pH 7.5) for 

10 minutes each, followed by one wash in 2X sse (pH 7.0) for 10 minutes and one wash in 

2X SSC/O.I % NP-40 (pH 7.0) for 5 minnles, both al 46 "C. Slides were mounled in 

Vcctashield mounting medium (Veclor Laboratories, Inc" Burlingame. CA, USA) containing 

DAPI (4', 6-diamidino-2-phenylindolc) and analyzed under a Leica Aristoplan tluorescence 

microscope using a triple band-pass filtcr block. Images were captured with a Genetisean 

ProbeMaster system (PSI, Chester, UK) using a Xybion CCD 24-bit color camera. 

RESULTS 

Blood samples were obtained from 32 pregnant women at 11-14 weeks of gestation (table 1). 

Cytogenetic analysis of the villus sample showed a female karyotype in 13 cases and a male 

km)'otypc in 19 cases. Two chromosomal abnormalities (47,XXY; 47,XY, +13) were 

encollntered in two pregnancies refen'ed for advanced maternal age. 

C07l-positive cells were isolaled ti'Om maternal blood laken before and after TA -CVS using 

MACS separation. First, mOlloeytes (CD14) and lymphoc)1es (CD45) were depleted, 

followed by enrichment of CD7l-positive cells. The number of XY cells in the 

C07I-positive fractions was dctennined by FISH using X and Y chromosome-specific 

probes. The number of cells analyzed in the CD7I-positive fracttons ranged from 0.3 to 

80 x 10' (table I). 

In 3 out of the 13 female cases (23 %), olle XY positive cell pel' sample could be detected, 

either before or after TA-CVS. in two alit of these three cases, a prior male pregnancy was 

either ascertained or could not be excluded due to a previolls spontaneous abortion. In the 

third case, only prior female prC!~,'llancies were reported. The number of XY -positive cells 

before TA-CVS in the male cases ranged from 0 to 4 XY cells, with the highest amount of 

X- and Y-positive cells in the 47,XXY case (table 1 and figure lA). The number of 

XV-positive cells after TA-CVS in the male cases ranged fi'om 0 to 187, with the highest 

alllount of cells in the ease with trisomy 13 (table I and figure 18). A total of ten out of 

19 male eases (53 %) displayed an increase in the number of XY positive cells after 

TA-CVS compared with the number ofXY cells before TA-CVS. 
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Table 1 Number of XY cells and a[pha~fetoprotein values before and after TA~CVS 

Case Fetal Ge~latiollal Number of cells Number of XY cells AFP villucs (kIUlI) 
no. kal)'otype age analyzed* (x 1 O~) 

(weeks) Befor~ cvs Allcr CVS Before CVS After CVS Before CVS After CVS 
I ;6. xx 12 17 22 0 0 7.9 14.6 
2 ;6. xx 12 15 15 0 I 3.0 8.8 
3 ;6. XX 11 13 15 II 0 1.0 1.0 
; 46. XX 12 13 I; 0 0 1.6 3.3 
5 46. XX 12 11 12 0 0 1.0 32.2 
6 ;6. XX 12 10 17 0 0 14.3 1J.8 
7 46. XX 12 21 24 0 II 2.5 3.4 
8 46. XX 12 13 12 I 0 8.0 10.3 
9 46. XX 12 28 41 0 II 8.7 8.4 
10 46. XX 12 29 25 0 0 7.4 12.0 
11 46. XX 12 7 II 0 0 2.0 9.9 
12 46. XX 12 8 20 0 1 1.4 3.3 
13 46. XX 12 28 17 0 0 14.7 19.3 

14 46. XY 12 II 12 II 0 3.0 2.3 
15 46. XY 12 9 II 0 0 4.4 7.8 
16 46. XY 12 27 8 0 0 1.0 9.0 
17 46. XY 12 18 18 I I 7.2 17.9 
18 46. XY 12 S 14 I 175 1.4 332.6 
19 46. XY 12 29 32 0 185 3.8 720.0 
20 46. XY 12 25 24 2 15 29.9 63.9 
21 46. XY 12 11 9 I 0 2.9 16.8 
22 46. XY 13 80 40 0 I 5.8 11.5 
23 46. XY 12 6 0.8 0 0 10.8 11.1 
24 46. XY 12 1.5 0.3 0 7 10.8 18.1 
25 46. XY 12 14 25 0 0 4.6 6.3 
26 46.XY 13 8 8 0 2 6.5 164.3 
27 46.XY 12 21 11 0 I 1.4 2.5 
28 46.XY 13 20 10 0 4 1J.8 3;.0 
29 46. XY 12 14 10 0 II 4.5 28.8 
)0 46. XY 12 17 22 0 0 6.4 10.9 

3 I 47. XXY 12 19 25 4' 23' 4.4 26.4 
32 47.XY.+13 IJ 28 21 2 187 4.2 72.2 

* All cells obtained aner C07l enrichment were analyzed by FISH lIsing X and Y chromosome 
specific probes; t number of XXY cells 

MSAFP levels before and after TA~CVS were determined and compared with the number of 

XY cells before and after TA-CVS (lab Ie I). The mean level ofMSAFP before TA-CVS was 

6.3 klU/l (combination of all male and female pregnancies) and 53.0 klU/1 after TA-CVS. 

indicating a significant 8.4~fold increase in i\'ISAFP Icvels due to the TA~CVS procedure 

(two~sal11ple Wilcoxon test: p < 0,01). For the male cases, ~vISAFP levels were found to be 

positively correlated with the number of XY cells after TA~CVS (Speannan rank correlation 

coetlicient r = 0.78; n = 19; P < 0.001). No significant difference could be observed in 

MSAFP Icvels after TA-CVS between male and female eascs (Mann-Whitney U-tcst, 

p=OA7). There was no correlation between the amollnt of villi taken (range 5-30 mg) and 

increases in fetal cell counts or MSAf-P levels. 
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Figun;'1 

DISCUSSION 

[11 silll hybridization on nucleated cells isolated from maternal blood 
showing X (red) <lnd Y (green) chromosomal signals. ivlatcrnal cells 
present with Iwo X signals per cell, while fetal cells present with two X 
and nne Y signal in the case ofa fetal 47, XXY karyotype (A) and with 
one X and one Y signal in the case ofa fetal 47,XY, +13 karyotype (8). 
(magnification IOOOx) 

In this paper, we have shown that TA-CVS not only leads to a FMT of fetal plasma 

components, but also results in the transfer of fetal nucleated cells into the maternal 

circulation. The extent of plasma FiVlT was fOllnd to be positively correlated with the amount 

offetal nucleated cells that could be isolated from maternal blood. 

Previously, it has been reported that the introduction of a biopsy needle into placental tissue 

to aspirate chorionic villi via a transabdominal route might induce a FrviT. This was 

demonstrated by elevated levels of i\'ISAFP measured after TA-CVS. Estimates of the extent 

of the FMT have indicated cases in which lip to 40 % of the fetal plasma volume has leaked 

into the maternal circulation (Los ef a/., 1989; Rodeck et a/., 1993; Smidt-Jensen ef a/., 1994; 

Brezinka et al., 1995). In spite of this extensive trauma, fetal demise as a result ofTA-CVS is 

rare and has been documented only in sporadic cases (Los et a/., 1993). In the present study, 

we have shown that the transfer of plasma components after TA-CVS is accompanied by a 

transfllsion of fetal nucleated cells. However, the extensive plasma FMT estimated on the 

basis of MSAFP may nut rellect a transfusion of a comparable volume of whole blood, 

because the number of fetal nucleated cells detected after TA-CVS is relatively low. If the 

size of the FMT is estimated on the basis of the assumption that a rise in i\'lSAFP corresponds 

to an equivalent transfusion of whole blood, it can be calculated that a rise of 650 kIU/I 
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corrcsponds to a FMT of I 1111 (Los et al., 1989). A transfusion of this size will lead to a 

leakage of at least 4 x 106 fetal nucleated cells into the maternal circulation (Millar et al., 

1985). This estimated level does not correspond to the observed number of fetal nucleated 

cells in the present study, which is at least an order of magnitude lower. This lower level of 

fetal nucleated cells might be explained by removal of these fetal cells by the maternal 

immune system, by retention of fetal cells in maternal tissucs, or by an inefficient isolation 

procedure. Alternatively, it is possible that an extensive plasma FMT as indicated by a large 

rise in MSAf-P is not accompanied by a prop0l1ionai cellular transfusion. In the prcscnt 

study, the extent of plasma FMT after TA-CVS significantly correlates with the extent of 

cellular FMT, although in individual cases an increase in plasma FMT was found that was not 

accompanied by a demonstrable cellular FMT. Retention of the fetal blood cellular 

component compared with the plasma FMT after TA-CVS might explain why relatively few 

cases with extreme plasma Fi''vIT are accompanied by fetal death. 

The number of fetal cells that could be isolated fi'om maternal blood before TA-CVS was 

found to be very low in the male cases (0-4 cells per sample). This is in agreement with other 

recent repolis in which similar levels of fetal cells were found (Reading el al., 1995; Lewis ct 

al., 1996). In the two cases with a chromosome abnormality (47,XXY; 47,XY, +l3), a 

relatively high number of fetal nucleated cells were isolated. It has previously been suggested 

that a higher level of fetal cells can be found in maternal blood in cases with chromosome 

abnormalities, possibly as a result of an altered placental structure (Simpson and Elias, 1994). 

More studies are needed to investigate whether higher levels of cellular FMT occur in 

abnormal pregnancies, as this will facilitate prenatal diagnostic procedures. 

Some XY -positive cells were found in female pregnancies; these cells Illay either represent 

false positives due to non-specific background staining of the V-chromosome probe, or 

represent cells persisting from prior male pregnancies, since t(~tal lymphoc)1es were fOllnd to 

circulate ill maternal blood as long as 27 years after birth (Bianchi el al., 1996). 

Elevated ivlSAFP levels induced by TA-CVS were found in both male and female 

pregnancies; although the three cases with the largest FMT were all male pregnancies, no 

signiticant difference between the two groups could be observed. 

The increase in fetal cell Humber after TA-CVS, resulting in the detection of XY cells in ten 

out of 19 male pregnancies, represents an interesting experimental in vh'o system. 111 vilro 

mooel systems bascd on artificial mixtures of neonatal conJ blood NRBCs and adult female 

peripheral blood cells have been described (Andrews et al., 1995), but they have the 

disadvantage that cell characteristics of el;1hroblasts at the 20 to 40-week stage may differ 

from those at 12 weeks of gestation, The present in vivo modcl of TA-CVS-inouced cellular 

Fi'vIT has the imp0l1ant advantage that fetal cells are derivcd from the correct gestational 

stage and may be used to improve isolation procedures and to study fetal ccll dynamics and 

characteristics. 
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Submitted 

Preeclampsia is a common, pregnancy-specific disease defined by clinical findings of 

elevated blood pressure combined with proteinuria and edema. Although the etiology of 

preeclampsia is not knowll, there are indications that abnormal placentation and endothelial 

dysfunction are involved in the pathogenesis of preeclampsia, In this chapter, we investigated 

whether this nbnormai placentation results in a transfusion of increased numbers of fetal 

nucleated red blood cells in the maternal circulation. 
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ABSTRACT 

Although the pathophysiology of preeclampsia is unknowll) several studies have described 

that abnormal placentation early in pregnancy might play a key role, Therefore~ we 

investigated whether this abnormal placentation results in a feto-maternal transfusion of fetal 

nucleated red blood cells in wOlllen with preeclampsia. Male fetal nucleated red blood cells 

were isolated using magnetic activated cell sorting from 20 women with preeclampsia and 

20 controls, matched for gest. tl iOllal age and parity. The number of XY cells was determined 

lIsing two-color fluorescence in situ hybridization for X and Y chromosomes. Significantly 

more XY cells could be detected in women with preeclampsia (0.61 ± 1.2 XY cells/ml blood) 

compared to women with ullcomplicated pregnancies (0.02 ± 0.04 XY eclls/ml blood) 

(Manll-\Vhitney U test, p<O,OOI), These results suggest that fetal cell trafficking is enhanced 

in women with preeclampsia and may contribute to the understanding of the disease, 

INTRODUCTION 

Preeclampsia is a pregnancy~specific syndrome particularly manifested in late pregnancy. 

Preeclampsia is clinically characterized by hypertension and proteinuria, Although the 

etiology of preeclampsia is unknown, in the last decade it has been proven that preeclampsia 

is related to abnormal placentation early in pregnancy. Abnormal placentation might be due 

to incomplete trophoblast invasion, The cause of failure of trophoblastic invasion is 

unknown, but therc appears to be a combination of different tactors, including genetic and 

environmental h1etors (Roberts and Rcdman, 1993). 

Abnormal placentation has been suggested to play an important role in feto-maternal cell 

traffic) which was first recognized in 1893, when Schmor! identified trophoblast cells in the 

lung capillaries of women dying of eclampsia. For the last 20 years, investigators have lIsed 

the presence of fetal cells in maternal blood in all attempt to develop a non-invasive prcnatal 

diagnostic test (Simpson and Elias, 1994; Bianchi, 1998), Trafticking of fetal cells into the 
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maternal circulation have raised several questions, pal1icularly regarding the types of cells 

that arc able to pass the placental barrier, the number of fetal cells, and the consequences of 

semi-allogeneic cells in the new hosl. 

In several reccnt studies, the exchange of fetal and maternal blood cells in women with 

preeclampsia has been investigated (Chua et al., 1991; Holzgrcvc et al., 1998; Knight et (fl., 

1998: La ef al., 1999), Recently, Holzgrcve et at, (1998) showed that <1 substantial propOI"tion 

of erythroblast cells present in the blood of women with preeclampsia (n=8) were of fetal 

origin, and that a significant increase in cross-placental tnllTic of fetal cells occurred in 

wOlllen with preeclampsia compared to controls. In addition, Lo et al. (1999) recently 

demonstrated a similar feto-maternal transfusion on the basis of abundance of fetal DNA in 

maternal serum ofpaticnts suffering from preeclampsia (11=20). 

To investigate whether abnormal placentation associated with preeclampsia results in a fcto­

maternal transfusion, we isolated fetal nucleated red blood cells (NRBCs) from women with 

preeclampsia compared to controls, both carrying a malc fetus, using a very efficient 

magnetic activated cell sorting (MACS) protocol and two-color fluorescence in silu 

hybridization (FISH) for X rmd Y chromosomes. 

MATERIALS AND METHODS 

Patfu/Us 

The study protocol was approved by the local Ethics Review Board. After patients had given 

infonned consent, matcl'Ilal blood samples (8-24 ml) were collected in vacutainers containing 

ethylenedinlllinetetra-acetic acid (EDTA). Blood samples were obtained from 20 singleton 

pregnancies associated with preeclampsia and 20 women with uncomplicated pregnancies, 

both carrying [\ male fetus. Samples were matched for gestational age (± I week) and parity. 

The gender of the Ictus was confirmed after delivel),. Preeclnmpsia was defined as an 

absolute diastolic bloodpressllI'e 290 mmHg, combined with proteinuria, which was defined 

as ;0:0.3 gil in 24 hours urine (Davey and MacGillivray, 1988). HELLP (hemolysis, elevated 

liver enzymes, and low platelets) was defined as thromboc)1es <lOOx109/1, ASAT and ALAT 

both >30 U/I. and haptoglobin < 0.28 gil. 

Eighteen healthy pregnant controls carrying a female fetus werc recruited as negative 

controls. These controls were included in order to determine the background level for fiSH 

analysis. 

,\laglletic activated cell sorting (AfAeS) 

Maternal blood samples were diluted 1:1 with phosphate-buffered saline (PBS) and 

Illononllcleated cells were isolated by Ficoll-Paque-Plus density gradient centrifugation at 
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750 G for 10 minutes. Cells were washed twice in MACS buffer (PBS) containing 1 % 

bovine serum albumin (BSA), 0.01 % sotliurn azide (NaN3). and 5 mM EDTA) and 

centrifuged at 250 G for 10 minutes. The numbcr of viable cells was calculated using a 

BUrker counting chamber. 

Monollllclear cells derived fi'om maternal blood were labeled on ice with C071 

(10 ftillO' cells) in 200 ftl MACS buffer for 15 minutes. Cells were washed in MACS burrel' 

and labeled with IgG2a+b-conjugated microbeads (20 ~t1/107 cells: iVliltcnyi Biotec, Bergisch 

Gladbach, Germany) for 15 minutes at 4 Pc. Cells were washed in MACS butfer, 

resuspended in 1 III I ivlACS buffer and applied via a pre-separation filter (30 pill; CLB; 

Amsterdam, The Netherlands) onto a miniMACS column (type ~vIS; Miltenyi). Atter 

removing the colullln from the magnet, CD71 + cells were eluted with 15 III I MACS buffer. 

The number of viable cells in each fraction was calculated using a Blirker counting cha;nber. 

Fluorescence in situ hybridization (FISH) 

Cell fractions were treated with 75 111M KCI, incubated for 18 minutes at 37°C, fixed in 

methanol: acetic acid (3:1) and stored at _20°C until further analysis. Cells were dropped 

onto Veetabond™ (Vector Laboratories, Inc, Burlingame, CA, USA) coated slides and 

air-dried. Slides were pre-treated with pepsin (100 fIg/ill!) in 0.01 N HCI at 37 "c for 

IS minutes, followcd by postfixation in 3.7 % formaldehydc in PBS for 15 minutes. 

Subsequently, slides were denatured for 5 minutes in 70 % formam ide (pH 7,5) in 2X SSC at 

75°C, followed by dehydration in 70 %, 90 % and 100 % ethanol for 1 minute each. 

Two-coloI' FISH was performed llsing a SpcctrumOrange labekd alpha-satellite probe 

(OXZ 1) for centromere region Xp 11, l-q 11.1 and a SpeetrumGreen labcled satell ite III probe 

for the Yql2 region (Vysis, Downers Grovc, IL, USA). Samples were hybridized overnight at 

37°C in a humidified chamber. 

Slides were post-washed at 70 "c in O.4X SSe/0.3 % NP-40 (pH 7.2), followed by 

5-60 seconds in 2X sse/o.1 % NP-40 (pH 7.2) at room temperature. Slides were mountcd in 

Vectashicld mounting medium (Vector Laboratories, Inc.) containing OAPI (4', 6-Jiamidino-

2-phcnylindolc) and analyzed under a Leica Aristoplan tluoreseence microscope using a 

triple band-pass filter block. Images were captured using: a Xybion CCO 24-bit color camera 

with a Genetiscan ProbeMaster system and MacProbc 2.5 image analysis sot1ware (PSI, 

Chester, UK). 

All slidcs were nnalyzed without prior knowledge of the gender orthe teills . 

.)'tatistic ({na(l'sis 

Clinical data ofwol11cl1 with preeclampsia and their controls are presented in table 1 as mean 

vailles ± SD. The unpaired Student t-test was used for a normal distribution, tested by 
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Kolmogorov-Smirnov and Shapiro- Wilk tests. For nOll-normal distributions the 

I'Vlann-\Vhitncy U lest was applied. Intra-uterine growth restriction is defined as a bit1h 

weight below the fifth-percentile according to Kloosterman (l970). The exact Pearson chi­

square test was lIsed to lest the fifth-percentile, Two-tailed tests with p<O.05 were accepted as 

significant differences. 

RESULTS 

Patients characteristics 

As expected, women with preeclampsia displayed a significantly higher mean systolic and 

diastolic blood pressure and a lower gestational age at delivCI)l and fetal birth weight thun 

women with ullcomplicated pregnancies (table 1). Preeclampsia was also associated with a 

higher incidence of intra-uterine growth restriction. Unexpectedly, women with preeclampsia 

had lower levels of hematocrit. 

Table I Clinical characteristics 

l'vtaternal age (years) 

Nullipumc (N) 
Systolic blood pressure (mmHg) 

Diastolic blood pressure (mmllg) 

Proteinuria (gil) 

Gestational age at blood sampling (days) 

Gestational age at delivery (days) 

Bil'thwcight (gram) 

Intra-uterine gro\\1h restriction (N) 

Hematocrit at blood sampling (vo1/vol %) 

n.d. not determined 

Pregnancies witll a male/etus 

Women with preeclampsia 

N=20 

29.6 ± 5,4 

14(70%) 

169.2 ± 28.8 

107.0± 13.3 

5.07 ± 4.5 

207.9± 21.3 

213.3±21.8 

1244 ± 530.2 

6 

32.7 ± 1.3 

Control !,'TOUp 

N=20 

29.7±4.7 

15 (75 %) 

117± 8.0 

75 ± 9.0 

n.d. 

207.7±20.5 

276.5 ± 14.6 

3206 ± 670.9 

0 

J5.I±J.6 

p- vall!<: 

0.95 

n.d. 

<0.001 

<0.001 

n.d. 

0.88 

<0.001 

<0.001 

0.02 

0.014 

XV positive cells were found in 70 % of women with preeclampsia (11=20, 0.61±1.2 XY 

cells/ml blood), whereas this was in 10% of controls (IF20, 0.02 ± 0.04 XY eells/ml blood) 

(figure 1). This difference in the number of XY cells is statistically significant (i'vIallll­

Whitney lJ test, p<O.OOl). The total number of cells analyzed ill the CD71+ fraclion ranged 
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bctween 23-2000x I 0' (216.5x 10' ± 440.4x 10') in wOlllen wilh preeclampsia and 14-375x10' 

(mean 145.1x104±440Ax104
) in controls. This difference was not statistically significant 

(Mann-Whitney U tesl; p~0.95). 

In women with preeclampsia, no correlation was observed between the number of 

XY~positivc cells and the severity of the disease, i.e. HELLP (n=12), proteinuria (n=20) and 

hypertension (diastolic blood pressure :2:90 Il1mHg; systolic blood pressure :2:.140; n=19) 

(Spearman's rank correlation coefficient, p>0.22). 
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Pregnancies with a/ema/e/ctus 

As negative controls to determine the background level for FISH analysis of XY cells, 18 

control patients can),illg a female fetus (mean gestational agc 209 days) were analyzed tor 

the presence of male cells alier MACS isolation of CD7l + cells. In 3 out of 18 (16.7 %) 

control patients 0.07 XY cells pel' ml maternal blood wcrc found. 
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COMMENT 

\Ve demonstrated an increased transfusion of fetal IlUclC<'llcd red blood cells in women with 

preeclampsia compared with women with ullcomplicated pregnancies. The number of male 

fetal cells found in the maternal circulation of women with preeclampsia was lip to 30-fold 

higher than in controls, indicating a six times higher level of fetal cells compared to 

previously repOited results (Holzgreve ef al., 1998; Lo ef al., 1999). Holzgrevc ef al. (1998) 

isolated fetal nucleated red blood cells using the same MACS protocol as described in this 

study, although they used directly labeled CD?I beads. This might explain our promising 

higher rccovcl), of male cells since we have previollsly demonstrated in a model system lIsing 

in vitro expanded erythroid cells (Jansen et al., 1999) that the isolation ofuucloated red blood 

cells was more efi1cient using indirect beads labeling (unpublished results). In the study of Lo 

el al. (1999), fetal DNA concentrations appear to be fivefold higher in maternal serum 

samples derived from women with preeclampsia compared to controls, indicating that the 

aillount of DNA in matcrnal blood samples Illay not correspond with the number of cells that 

enter the maternal circulation in women with preeclampsia. 

Some XY~I)()sitive cells were found in pregnancies can)'ing a female fetus. In 2 out of 3 of 

these pregnancies a previolls pregnancy carrying a male fetus could not be excluded due to a 

previolls spontaneous abol1ion, whereas in one case a previous male pregnancy was 

ascel1ained. No XV-positive cells were found in primigravidae efln:Ang a female fetus. These 

male cells in female pregnancies may either represent false positives due to nOll-specific 

background staining of the Y chromosome probe, or represent fetal cells persisting from 

previous pregnancies call)ling a male fetus, since fetal cells have been found in the maternal 

circulation as long as 27 years allel' birth (Bianchi el al., 1996). 

The increased feto-matcrnal transfusion observed in women with preeclampsia might be 

explained by a decreased intravascular volume due to vasoconstriction and leading to an 

increased absolute cell concentration and consequently. a higher number of fctal cells. 

However, unexpectedly hematocrit valucs were significantly lower in women with 

preeclampsia compared to conlrols. These lower le"els can be explained by Ireatmenl or 
women with preeclampsia with plasma volume expansion medication before the timc of 

blood sampling. 

Thc mechanism of fetal cell escape into the maternal circulation is unknown. Preeclampsia is 

related to poor placental transfusion probably due to abnormal placentation early in 

pregnancy. This might result in the release of unknown factors, which in turn will lead to 

destruction of the maternal vascular endothelium. Thc abnormal placentation may explain the 

increased transfusion of fetal products in preeclampsia. Furthermore, feto-maternal 

transfusion has been observed in patients with chromosomal anomalies and aller chorionic 
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villus sampling, possibly as a result of disrupted or altered placental morphology (Simpson 

and Elias, 1994; Jansen e/ (/1., 1997). 

The clinical findings of preeclampsia become manifested late in pregnancy, lIslially aner the 

20th week of gestation and can develop in a life~thrcatcning disease. Precclampsia is a major 

cause of fetal and maternal morbidity and 1ll0l1ality. Therefore, it is important to develop a 

predictive screening test early in pregnancy. Relevant information regarding the frequency of 

fetal nucleated red blood cells in maternal blood is contradictOl)I, and the frequency of fetal 

nucleated red blood cells varies signitlcantly among individuals and throughout the three 

trimesters of pregnancy (Hamada e/ at"~ 1993; Shmga~ Tall berg e/ a/" 1995; Smid et at"~ 1997; 

Kuo, 1998), The question arises as to whether fetal cells are present in maternal blood of 

women with preeclampsia early in pregnancy and whether they can be used for the 

development of a prognostic test. Longitudinal studies are needed to invcstigate the 

frequency of fetal cells in maternal blood throughout gestation and in particular in those 

patients at risk for preeclampsia, 

The presence of fetal cells in blood of women with preeclampsia may contribute to the 

disease process. Although we did not demonstrate a significant correlation between the 

number of male cclls in the circulation of women with prceclampsia and the severity of their 

clinical symptoms, fetal cells are foreign to the maternal host and may have immunological 

consequcnccs for mother and fetus. Furthermore, a feto~matcrnal transfusion may occur at the 

time of labor and delivel)', This may establish fetal cell microchimerism in the mother, which 

may be implicated in the subsequent developmcnt of diseases sllch as scleroderma that are 

more common in fcmales (Artlett et a/., 1998; Nelson, 1998; Evans et aI" 1999). 

In summa/Y, we dcmonstrated an increased number of male fetal nucleated red blood cells in 

pregnancies complicated with preeclampsia, which could not be observcd in their matched 

controls, This suggests that fetal cell trafficking is enhanced in women with preeclampsia and 

may contribute to our unuerstanding orthe disease, 

REFERENCES 

Artlett C.M., Smith J.B., Jimenez SA (199S). Identification of fetal DNA and cells in skin 
lesions ii'om women with systcmic sclerosis, tV F1lg1 J J\Icd 338: 1186~ 1191, 

Bianchi D.W., Ziekwolf G.K., Weil G.J., Sylvester S., Demaria M.A. (1996). Male fetal 
progenitor cells persist in maternal blood for as long as 27 years postpartulll. Proc Natl !lead 
Sci USA 93: 70S-70S. 

Bianchi D,\V. (1998). Currcnt knowledge about fetal blood cclls in the maternal circulation. J 
Perillat Med 26: 175-1S5. 

103 



Chapter 5 

Chua S.,. Wilkins T.~ Sargent I., Redman C. (1991). Trophoblast deportation in prc~eclalllptic 
pregnancy. 81' J Obstet Gynaecol98: 973-979. 

Davey D.A., MacGillivray I. (1988), The classification and definition of the hypertensive 
disorders ofpregnuncy. Am J Obstet GYl1CCV{ 158: 892-898. 

Evans P.c., Lambert N., Maloney S., Furst D.E., Moore J.M., Nelson J.L. (1999), Long-term 
fetal microchimerislll in peripheral blood mononuclear cell subsets in healthy women and 
women with scleroderma. Blood 93: 2033-2037. 

Hamada H., Arinami T., Kubo T" Hamaguchi H., Iwasaki H. (1993), Fetal nucleated cells in 
maternal peripheral blood: frequency and relationship to gestational age. Hum Genet 91: 
427-432. 

Holzgreve \V., Ghezzi P., Oi Naro E., Ganshirt D., fvlaymon E" Hahn S. (1998), Disturbed 
feto-maternal cell trame in preeclampsia. Obstet Gyneco/91: 669-672. 

Jansen M.\V,J.C., Brandenburg H" Wildschut H.I.J" Martens A,C.M" Hagenaars A.M" 
Wladimiroff J.W., In 't Veld P.A. (1997). The effect of chorionic villus sampling on the 
number of fetal cells isolated from maternal blood and on maternal serum alpha-fetoprotein 
levels. Prellat Diagll 17: 953-959. 

Jansen M,\V,J,C., VOIl Lindern 1\'1., Beug H" Brandenburg H" Wildsehut H.I.J" Wladimiroff 
J.\V" In 't Veld P.A, (1999), The use of in vitro expanded el)1hroid cells in a model system 
for the isolation of fetal cells from maternal blood, frenal Diagn 19: 323-329. 

Kloosterman GJ. (1970), On intrauterine growth, The significance of prenatal care. fnt J 
GYlleaco/ Dbstet 8: 895-912. 

Knight M., Redman C.W., Linton E.A., Sargcntl.L. (1998). Shedding ofs),nc)1iotrophoblast 
microvilli into the maternal circulation in pre-eclamptic pregnancies, SI' J Obs'lel Gynaeco/ 
105: 632-640. 

Kuo P. (1998). Frequencies of fetal nucleated red blood cells in matemal blood during 
different stages ofgestatiun. Feta/ Diagll Ther13: 375-379. 

Lo Y.M" Leung T,N" Tein M.S., Sargent'I.L., Zhang J., Lau T,K., Haines CJ" Redman 
C.\V, (1999). Quantitative abnormalities of fetal DNA in maternal serlllll in preeclampsia. 
Ciill Che1ll45: 184-188. 

Nelson lL. (1998). Pregnancy immunology and autoimmune disease. J Reprod ,tJed 43: 
335-340. 

Roberts J .i\t, Redman C. \V. (1993). Pre-eclampsia: more than pregnancy-induced 
hypertension. Lallcet 341: 1447-1451. 

Schmorl G. (1893). Pathologisch-anatomische untersllchungen ueber puerperal-ekl<lmpsie. 
Leipzig: Vogel. 

104 



Feto-maternal cell trafficking in preeclampsia 

Simpson J.L., Elias S. (l994). Isolating fetal cells in maternal circulation for prenatal 
diagnosis. Prenlll Dillgn 14: 1229-1242. 

Siunga-Tallbcrg A., el-Rifai \V., Keinanen M., Ylinen K., Kurki T., Klinger K., Ylikorkala 
0., Knuutila S. (1995). Maternal origin of nucleated CI)1hrocytcs in peripheral venous blood 
of pregnant women. Hum Genet 96: 53-57. 

Smid M., Lagona F., Papasergio N., Fermri A., Ferrari M., Cremoncsi L. (1997). Innuence of 
gestational age 011 fetal deoxyribonucleic acid retrieval in maternal peripheral blood. Am .! 
Dbslel Gyneco/ 177: 1517-1522. 

105 





(I II n···o 1 P T fj/ 
'J ~~ 41 I :I 'J -

-





Gcncral discllssion and conclusions 

The isolation of fetal cells from the matclllal circulation may have implications in prenatal 

dingnosis since it would eliminate the sillall but significant risk to the fetus associated with 

morc traditional procedures like chorionic villus sampling and amniocentesis. If true fetal 

cells are conclusively isolated, clinical applications could includc screening for fetal 

chromosome abnormalities by FISH and gene abnormalities by PCR. Most attention has been 

focllssed on the isolation of fetal NRBCs. A small number ofNR13Cs occur in the peripheral 

venolls blood of women during normal pregnancy, but they are less common in the blood of 

healthy non-pregnant W0111el1 (Bianchi e/ al., 1991; Ganshil1-Ahlert el al., 1992; Siunga­

Tallberg el al., 1994). It was, therefore, believed that these cells were of fetal origin and 

could be a promising source of fetal material tor non-invasive prenatal diagnosis, especially 

since the short lifespan of erythroid cells eliminatcs thc possibility of such cells to persist 

fi'om previolls pregnallcies. However, most of these N RBCs in pregnant women appearcd to 

be of maternal origin (Bianchi el al., 1994a; Busch el al., 1994; Siunga-Tallberg el al., 1995, 

1996), leaving a vel)' small number of fetal NRBCs which may not be sufficient for a reliable 

prenatal diagnostic test on a large scale. To cstnblish high purity and yield of these rare fetal 

cells, morc specific and/or more efficient enrichment techniques arc needed, which have been 

developed using different model systems (Andrews et al., 1995; Bianchi et al., 1996a; 

Troeger el a/., 1999). 

6.1. Model systems used for the isolation offetal cells from maternal blood 

Attempts to isolate fetal cells from malel'llol blood has been frustrated due to very low yields 

ofNRBCs or even no detectable fetal cells in many matcrnal blood samples. Absence of fetal 

cells has been rcpolicd in numerous pttpers and might be caused by inefficicnt isolation 

stmtegies or low sensitivity of the uscd identification methods. In ordcr to improve the 

efficiencies of isolation techniques, dinerent model systcms have been described. In most of 

these studies, m1iticialmixtures of maJe umbilical cord blood cells, fetal blood cells or male 

fetal liver cells and adult female peripheral blood mononuclear cells were lIsed (Andrews e/ 

al., 1995; Bianchi el al., 1996a: Troeger el al., \999). In these model systems, different 

isolation protocols were evaluated using density gradient centrifugation, i\llACS, F ACS or 

illllllullomagnetic beads for the isolation of CD71 + NRBCs, after partial depletion of 

contaminating maternal cells. In addition, Troeger e/ al. (1999) also compared the retrieval of 

NRBCs lIsing antibodies against GPA, CD36 and the fetal Jivcr sLlrHlce antigen HAE9. 

In the study described in Chapter 2, we have llsed in vitro expanded CI)rthroid cells derived 

from male umbilical cord blood mixed with female peripheral blood mononuclear cells as a 

model system Jor the isolation of fetal cells from maternal blood. In contrast to the previously 

reported model systems (Andrews el al., 1995; Bianchi el 01., 1996a; Troeger t!I al., 1999), 
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we were able to obtain a homogenolls erythroid cell population, that could be expanded in 

vitro to high cell numbers, i.e. 107_108 el)1hroid cellsll111 cord blood after 10-15 days of 

culture, and these cells could be maintained in an el)1hroblastic cell stage. Morc importantly, 

the expanded CI)1hroiJ cells were imllllll1ophcnotypically identical to fetal NRBCs derived 

Ii-om 10-20 week tetal liver (Bianchi, 1994b), expressing high levels of CD71. This might 

indicate that the in vitro expanded CI)lthroid cells resemble fetal NRBCs circulating in 

maternal blood. Nevertheless, it should be mentioned that the most ideal source of fetal 

material lIsed in any model system tor the isolation of fetal cells n'ol11 matcl1lul blood would 

be fetal blood of 8-15 weeks of gestation. However, it is technically difficult to obtain fetal 

blood via cordocentesis before the gestational age of 20 weeks. To overcome this problem, a 

1110re physiological model system, which is the isolation of fetal cells after chorionic vilius 

sampling, can be used to optimize fetal cell isolation procedures. \Ve demonstrated, as 

described in Chapter 4, a significant increase in the 11l1l11ber of detectable fetal NRBCs in the 

maternal circulation directly after chorionic villus sampling. This indicates that maternal 

blood samples obtained shortly after chorionic villus sampling arc 1110re likely to reveal fetal 

NRBCs, and that these fctal cells are derived from the correct gestational age, i.e. at 12 weeks 

of gestation, which may be an optimal time in pregnancy for the development of a 

non-invasive prenatal diagnostic test. This ill vivo 1110del system has been used by several 

investigators (Oosterwijk el al., 1996, 1998a, b; de Graaf el al., 1999). 

For the isolation of fetal NRBCs, many investigators have lIsed antibodies against C071, the 

transferrin receptor (Bianchi et al., 1990; Ganshirt-Ahlel1 el al., 1992; Lewis el al., 1996; 

Sohda et al., 1997). C07l is IlOt only expressed on the entire el)1hroid lineage (Loken et al., 

1987), but also on activated lymphoc)1es, monoeytes, trophoblast cells and any cells 

incorporating iron (Krantz, 1991). To improve overall efficiency for fetal cell isolation using 

the CD7l antigcn, a strategy based on prior depletion of total white blood cells has recently 

been devised using monoclonal antibodies against CD45 and CD14 for depletion of 

lymphoc)1es and monocytcs, respectively (Bianchi el al., 1991; Busch el al., 1994; Reading 

el ai" 1995; Lewis et al., 1996). In this thesis (Chaptcr 2), we show a signilicant two-fold 

highcr yield of male NRBCs derived from il1 vitro expanded erythroid cells using a direct 

enrichmcnt protocol for CD71 + cells compared to the combined depletion/cnrichment 

protocol. This suggests that dcplction of lymphoc)1es and/or l11onoc)1es may also lead to loss 

of fetal cells, which may comprise cells of the el)1hroid lincage that express CD45 at a low 

level. Consequently, this will result in a lowcr yield of fetal NRBCs. A disadvantage of the 

direct enrichment ofC071+ fetal cells is that the isolated fraction has a low purity due to the 

prcscnce ofa high number of maternal cells. This might hamper the subsequent identification 

of fetal cells by FISH or PCR analysis_ 
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6.2. In vitro expansion of fetal cells 

For selective amplification of the target cell population for prenatal genctic tliagnosis, a 

simple conceptual approach may be the in vitro cultivation of fetal cells. So far, the number 

of fetal cells that have been isolated hom maternal blood samples is velY low, and theretore, 

it is generally desirable that fetal cells can be selectively expanded in vitro. In order to 

develop a non-invasive prenatal diagnostic test, it is impol1ant to obtain maternal blood as 

early as possible. Fetal hemopoiesis stm1s in the yolk sac between days 16 and 19 tollowed 

by hepatic hemopoiesis at approximately 6 weeks, indicating that fetal hemopoietic 

progenitor cells may be present in the maternal circulation from week 3 of gestation (Metcalf 

"nd Moore, 1971). 

Several studies have suggested that fetal progenitor cells differ from those of adults (Forestier 

et al., 1991; Weinberg ('I a/., 1992). This urges tor nn approach to exploit these differences 

tbr the selective expansion of fetal progenitor cells. It may be possible to lise cultures of 

mononuclear cells obtained from matel1lal blood to improve the proportion of fetal to adult 

progeny by manipulation of the culture conditions, and thereby exploiting the grO\\1h 

advantages of fetal cells over maternal ones. This may result in an enhancemcnt of both the 

relative and absolute number of fetal cells. 

The most suitable candidates among the variolls types of fetal cells that cross the placenta are 

the hemopoietic progenitor cells. These cells are characterized by the expression of the 

CD34 cell surface antigcn. Previolls studies lIsing in vitl'o colony-forming nssays as a 

mcasure of felal hemopoietic progenitors have demonstrated that both early (l2-24 weeks of 

gestation) and pre~term (25-32 weeks of gcstation) fetal blood samples have a highcr 

frequency of hemopoietic progenitors compared with term umbilical cord blood, adult 

peripheral blood, and bone marrow, and this frequency declines with advancing gestation 

(Linch et al., 1982; Clapp et al., 1989; Andreu, et al., 1991; De Bruyn et al., 1995). 

Moreover, Shields and Andrews (l998) recently demonstrated that early second trimester 

tctal blood produced a significantly greater number of el;,1hroid burst-tbrming units (BFU-E) 

compared with umbilical cord blood from term gestations. This higher number of BFU-E 

may be related to a large Illimber of hemopoietic progenitors committed to red blood cell 

differentiation bccause the fetal red blood cell mass is expanding rapidly enrly in gestation. 

These early gcstation el)lthroid progenitors also appear to have a greater proliterative 

response to a given growth factor stimulus relative to those in term umbilical cord blood. 

Recently, Campagnoli et a/. (2000) investigated the number and cell characteristics of 

circulating progenitor cells in first trimester fetal blood and demonstrated a higher number of 

CD34+ cells compared to term cord blood. This suggests that circulating CD34+ cells are 

likely to contribute significantly to hematopoiesis in early fetal life. Moreoyer, shurt-lenn 
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liquid culture of first trimester fetal blood cells rcvealed extcnsive ill vitro proliferation in 

response to various c)10kines. 

In our study, described in Chapter 3, we evaluated whether fetal hemopoietic progenitor cells 

derived t1'om maternal blood samples call be selectively expanded ill vitro in order to develop 

a non-invasive prenatal diagnostic tcst. Although to date some success has been reported 

(Valcrio el al., 1996), most groups havc found the degree of expansion insufficient against 

the higher numbcr of background maternal cells (Little et al., 1997; Chen et al., 1998; Han el 

al., 1999). To mimic this situation, i.e. low number of fetal cells in all excess of matemal 

cells, we first lIscd a model system in which limiting numbers of CD34+ umbilical cord 

blood (UCS) cells were diluted in up to I in 400,000 with CD34+ adult peripheral blood cells 

to detennine whether these limited numbers can be selcctively expanded. \Ve demonstrated 

that even very low numbers of CD34+ UCB cells could be expanded 1500-fold, which also 

corresponded to the expansion of CD34+ cells derived from 20-week tetal blood. 

Unfortunately, application of the same culturc protocol to maternal blood samplcs obtained at 

7-16 weeks of gcstation did not show preferential growth of fetal cclls. This suggest that 

primitive fetal cells might either not circulate in maternal blood or may require ditTerent 

combinations and/or concentrations of c)10kines for their in \'iII'O expansion. 

Another question concerns the stability of tetal cell propel1ies. If fetal hemopoietic progenitor 

cells arc present in the maternal circulation, the question arises whether they are clonal and 

possess unchangeablc characteristics or whether thcse cells arc transient and respond to a 

changing cnvironment. \Vhen fetal cell propertics arc determined, for example surface 

antigens, this is performed 011 cells recruited directly from fetal blood or umbilical cord blood 

samples. However, it is not known whether these cells keep the same marker antigens 

expressed in the new environmcnt, i.e. the IlHlternal circulation, after crossing the placenta. 

Therefore, the question arises, especially for cclls ill culture, as to whether fetal cells after a 

few rounds of proliferation and differentiation maintain or acquire properties thnt make them 

distinguishnble from the abundant maternal counterparts. 

FUl1her development of in vitro expansion approaches will involve detection of differcnccs in 

optimal growth factor rcquirements bctween matcrnal and fetal hemopoietic progenitor cells 

in order to exploit them for selective Ictal ccll expansion. F1II1hennorc, properties of fetal 

cells circulating in maternal blood and after ex vil'O cultivation should be investigated. 

6,3, Clinical implications offetal cells in the maternal circulation 

A major point of interest about fetal cells in the maternal circulation is whcther their 

existence may have an effect on the maternal immune system, especially in cascs with high 

numbers of tetal cells. The incidence of fetal cells in mnternal blood has been reported to 
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increase in pregnancies in which the fetal and placental karyotype was abnormal (Elias et at.. 

1992: Ganshirt-Ahlcl1 et al., 1993: Simpson and Elias, 1993: Bianchi el al., 1997), aner 

chorionic villus sampling (Chapter 4), and in women with preeclampsia (Chapter 5: Chua et 

01., 1991: Gallshil1 el ill., 1994: Holzgreve el 01., 1998: Lo e/ al., 1999). 

6.3.1. Aneuploidy 

Almost all numerical chromosomal disorders have been detected in fetal cells isolated from 

maternal blood. including trisomy 13, trisomy 18, trisomy 21, some of the sex chromosome 

abnormalities and triploidy. In most aneuploid pregnancies, it has been shown that the 

number of fetal cells in the maternal circulation is increased compared to normal pregnancies 

(Elias e( al., 1992: Ganshit1-Ahlert et a/., 1993: Simpson and Elias, 1993: Bianchi e{ al., 

1997). This increased feto-maternal cell trafficking could be the result of altered placental 

structures, i.e. destruction of the placental feto-maternal barrier (placenta membrane: see 

Chapter 1. paragraph 1.1.1.), reduced vnscularization or disturbed ucvelopment or fUllction of 

plncental villi (Kuhlmnnl1 el a/., 1990: Simpson nnd Elins, 1994; Genest el al., 1995; 

Jmmiaux nnd Hustin, 1998). This elevated number of fetal cells in chromosomally abnormal 

pregnnncies cnn also be explnined by nn incrensed isolntioll efficiency of fetal NRBCs, since 

it hns previollsly been rep0l1ed that both CD71 expression as well ns the number ofNRBCs is 

increased in fetal bloou snillpies of nnellploid fetllses (Thiiaganathull e( al .. 1995: Zheng el 

al., 1999). Therefore, it might be expected that the isolation ofenoLlgh fetal cells is fncilitnted 

in most nneuploid pregnancies, nlld hence, may be npplicnble tor prenatal dingnosis in the 

near future. 

6.3.2. The effect of chorionic villus sampling 

It has previollsly been reported thnt the introduction ora biopsy needle into placentnl tissue to 

aspirate chorionic villi via the trnnsabdominnl route might induce a feto-maternal transfusion. 

This wns demonstrnted by elevated levels of mnlernal serum alpha-fetoprotein levels 

measured before and nner trnnsabdominal chorionic villus sampling (Los ('( al., 1989: 

Rodeck el (// .. 1993: Smidt-Jenscn e/ al .. 1994: Brezinka ('( a/., 1995). Although estimates of 

the extent of the feto-maternal transttlsion indicnted thnt lip to 40 % of the fetal plasmn 

volume may have leaked into the mnternal circulation, Ictal demise is a rare occurrence nnd 

Iws been doellmcnteu only in sporadic cnses (Los e( aI., 1993). \Ve were interested in the 

question whether this tmnsfer of fetal pin sma was accompanied by n concurrent incrense in 

the number of fetnlnuclented cells in the maternnl circulntion (Chapter 4). We isolnted fetal 
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NRBCs from maternal blood before and after chorionic villus sampling and were able to 

demonstrate an increase in the number of fetal cells in 10 out of 19 male pregnancies 

following the invasive procedure. This fcto·maternal transfusion not only leads to the transfer 

of fetal nucleated cells but also results in the leakage of alpha·fetoprotein. However, 

feto-maternal plasma trafJsfusion estimated on the basis of alpha-fetoprotcin concentrations 

docs not reflect a transfusion of a comparable volume of whole blood! because the number of 

fetal NRBCs detected after chorionic villus sampling is relatively low. This lower level of 

fctal NRBCs might be explained by removal of these fetal cells by the maternal immune 

system, by retention of fetal cells in maternal tisslles, or by an inefficient isolation procedure. 

The question remains what the consequence is of these semi-allogeneic cells in the new host. 

6.3.3. Feto-maternal cell trafficking in preeclampsia 

In Chapter 5, we demonstrated a 30-fold higher number of fetal NRBCs in patients with 

preeclampsia compared to women with uncomplicated pregnancies. The mechanism of this 

fetal cell escnpe is not known. Preeclampsia is related to a poor placental transfusion 

probably due to an abnormal placentation early in pregnancy. This might result in the release 

of unknown factors, which in turn will lead to destruction of the maternal vascular 

endothelium. The abnormal placentation may explain the increased transfusion of fetal 

products in preeclampsia. 

Although we did not demonstrate a significant correlation between the number of fetal cells 

in the circulation of patients with preeclampsia nnd the severity of their clinical symptoms, 

fetnl cells are foreign to their maternal host and may have immunological consequences for 

mother and fetlls. Together with a feto-l11nternal transfusion occurring at the time of labor and 

delivclY, these retal cells may establish microchimerism in the mother, which may be 

implicated in the subscquent development of diseases sllch as scleroderma thnt nre more 

C0l111110n in women (Artlett et al.! 1998; Nelson, 1998a; Evnns et a/., 1999). It would, 

therefore! be of interest to investigate whether nutoilllll1UI1C diseases will occur more often in 

patients with a previolls histOl)1 of preeclampsia. 

6.4. Fetal-maternal immunology: tolerance versus autoimmune disease 

The application of molecular biological tcchniques to the study of human pregnancy has 

resulted in the recognition of two-directional cell trafficking of nucleated cells between the 

fetus nnd the mother (Lo ct al., 1996). It has, therefore, been suggested that pregnancy may 

estnblish as a long-term, low-grade chimeric state in the human Icmnle. Chimera is 
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mythologically described as having the head of a lion, the body of a goat, and the tail of a 

serpent. In medicine, the term "chimera" is lIsed to indicate a body that contains cell 

populations derived from (a) different individual(s). 

Fetal cells have been detected in the maternal circulation as early as 4 weeks and 5 days 

postconccption (Thomas (II al., 1994). The origins of these cells are presently unknown. It has 

been suggested that active cellular traffic across the placcnta early in gestation is important 

and perhaps necessary for inducing tolerancc to the human fetus. Recently, Bianchi el al. 

(J996b) demonstrated fetal progenitor cells in matcrnal blood as long as 27 years after bh1h 

of a male infant. The establishment of fctal progcnitor cells in maternal lymphoid organs or 

bone marrow may help to maintain tolerance of the fetal gran in a manner analogous to 

allogeneic organ transplantation. Starzl el al. (I 993a, b) have demonstrated chimcrism 

resulting t1'om widespread secding of donor dendritic and hemopoietic cells that were derived 

from whole organs being transplanted, such as kidney, liver, or intestine. They have 

postulated that bi-directional ceJlmigration and repopulation is the first step in the acquisition 

of dOllor-specific tolerance, and, ultimately, successful graft acceptance. The human 

pregnancy may thereforc benefit from similar one-way or even two-way traffic of fetal andlor 

matcrnal cells. 

On the other hand, it has previously been hypothesized that microchimerislll may contribute 

to the pathogenesis of some autoimmune diseases, such as scleroderma, systemic IUPlls 

el)1hematoslls (SLE), Sjogren's syndrome, Hashimoto's thyrioditis, and primm)' bilim)' 

cirrhosis (rursz)1er ef al., 1970; Hochberg, 1985; Danielsson ef al., 1990; Kelly ef al., 1991; 

Silman, 1991). Autoimmune diseases are thought of as disorders in whieh a body's cells 

inexplicably attack its own tisslles. The exposure to fetal cells during pregnancy represents an 

imlllullological event because these cells express gene products that are inherited from the 

father, and are thus foreign to the pregnant woman. 

An example of an autoimmunc diseasc in which microchimerislll Illay be involved in the 

pathogenesis is scleroderma. Scleroderma has a strong predisposition to women with a 

female-to-male ratio ranging from 3:1 to 8:1, and the highest incidence of scleroderma in 

women occurs between the age of 35 and 54, generally alter the childbearing ycars (Silman el 

al., 1988). Scleroderma also has clinical similarities to a known condition of human 

chimerism: chronic gran-versus-host disease that occurs after allogeneic transplantation of 

hematopoietic tissue (Furst el 01.,1979). 

Recently, microchimerislll has been studied in women with scleroderma who had previously 

given birth to at least one son prior to the diseasc onset. This patient group was compared 

with healthy controls with at least one son (Nelson el al., 1998a). Male DNA was found more 

frequently and in greater amounts in women with scleroderma than in healthy controls. This 

observation was extended in a study by Artlett el al. (1998) addressing the important issue as 

to whether microchimerism could be detected in the primal)' target organ of scleroderma, 
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which is the skin, In their study, a Y-chromosome-specitic scqucnce was found more ottcn in 

DNA extracted from skin biopsy specimens and pcripheral blood samples in women with 

scleroderma than in controls. The majority of women with positive results had previously 

given birth to a male child, although for some women with positive results the pregnancy 

histOl)' Was unknown or included miscarriage but 110t the birth of a SOIL 

Pregnancy presents an immullological challenge to a woman since half of the genes of the 

fetus arc derivet! from the father, HLA genes are of particular intercst since they encode for 

molecules that arc known to tlmction as classical transplantation lIntigens and also govern 

immunc responses. Il has been suggested that HLA compatibility of a previously born child 

might constitute a risk factor for thc subsequent development of scleroderma in the mother 

(Nelson, 1996), Accordingly, a strong association between HLA-DRB 1 compatibility and 

scleroderma has recently been demonstrated (Art lett et aI., 1997; Nelson et al., 1998b). No 

association was observed for HLA class I antigens. 

The finding of persistent microchimerism of fetal cells, however, docs not explain the 

occlirrence of scJerodenna in men or in women who have never been pregnant. Alternative 

sources of microchimerism in those patients include the engraftment of donor cells atter a 

blood transfusion, or from a twin (Nelson, 1996). Another possibility is that microehimerism 

is deri\'ed from maternal cells, since these cells have been detected in cord blood samples, 

indicating that the traffic of cells during pregnancy is bi-direetional (l-Iall et al., 1995; La et 

a/., 1996). 

A mechanism by which microchimerislll might contribute to the pathogenesis of scleroderma 

is unknown, but insight can be gained through knowledge acquired from studies of 

microchimerislll in transplantation biology. It is also not known how a small degree of 

microchimerism might result in either tolerance, breaking of tolerance or gratt-verslls-host 

disease. Although fetal cells could be primarily sequestered in the affected tissues, the low 

concentration of fetal cells argue against a role for these cells as direct effectors of damage to 

host tissues. Another possibility is that a small popUlation of non-host cells (or peptides) 

could start a process in which subsequent damage is caused by these host cells. Alternatively, 

a small popUlation of nOll-host cells could down regulate host immunoregulatory cells, which 

would allow damage by flutoreactive host cells (Fink et at"~ 1988). 

In conclusioll, it seems that microchimerisl1l may account for a balance between a 

host-verslls-graft reaction and a gran-versus-host reaction, leading to acceptance of the 

allogeneic fetlls. Under some circumstances this halance has becn disturbed and an 

autoimmulle disease might develop, The rcason for disturbance of this balance has not yet 

been discovered, 
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6.5. Conclusions and future research 

The isolation of fetal cells from the maternal circulation has the potential to allow early nOIl­

invasive genetic analysis without endangering the fetus, Targeting these cells has proved to 

be technically challenging because of their low frequency and the absence of suitable unique 

fetal cell markers and corresponding monoclonal antibodies. To be useful in prenatal 

diagnosis, fetal cells must be distinguished from the vast majority oflllatcrnal cells, they must 

be enriched to an acceptable level of purity, and mllst then be identified as cells of fetal 

origin. A major cOllcern is the identification of female fetal cells necessitating unique fetal 

markers in combination with FISH or PCR. 

Fetal cell detection and genetic analysis by PCR or FISH is hampered by the presence of 

matemal sequences excluding the detection of maternally inherited and X-linked disorders. 

Thereby, detection of aneuploidy and paternally inherited disorders is most accessible for 

prenatal diagnosis lIsing tetal cells isolated t)'01ll maternal blood. In order to diflerentiate 

between maternal and tetal sequences single fetal cells should be retrieved by 

111 icrod issection, 

Despite some promising results from investigations in this field, many of the basic questions 

regarding the circulation of fetal cells in the maternal blood remain unanswered. Specifically, 

numerous questions have to be addressed concerning the frequency and the type of fetal cells 

that circulate in the maternal blood during pregnancy. Espccially in nornlal pregnancies, the 

possibility of clonal expansion of fetal cells needs to be further explored, Furthermore, 

techniques that facilitate the identification and isolation of fetal cells needs to be optimized 

before this technique can be lIsed for prenatal diagnosis, 

It has prcviollsly been reported by variolls groups that ancuploid pregnancies arc associated 

with an increased feto-matcrnal transfusion as a result of altered placental structures, 

Therefore, it may be expected that a non-invasive prenatal dingnostic test using N~lal cells in 

maternal blood may only be applicable in cases of tetal chromosomal abnormalities, In our 

opinion, it will not fully replace currently used invasive procedures like chorionic villus 

sampling and mnniocentesis. Instead, the isolation of fctal cells may provide an additional 

screening test adjunct to the current nOIl-invnsive tests, like ultrasound screening and 

Illatelllul serqm screening. 

Another question concerns the imlllunological consequences of the presence of fetal cells in 

the circulatiOil of pregnant women and after pregnancy. Fetal cells may establish 

microchimerism in the mother after the occurrence of a teto-maternal transfusion, e.g. after 

chorionic villus sampling, in patients with preeclampsia, or in pregnancies with a 

chromosomally abnonnni fetus, and even in normal pregnancies, These fetal cells could be 

engraftcd in maternal lymphoid organs or bone marrow. Alternatively, fetal progenitor cells 
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could remain in the circulation and continue to divide for years. It is also conceivable that in 

subsequent pregnancies, in the presence of appropriate stimuli, these cells might begin active 

cell cycling and feed cells of other hemopoietic lineages, sLlch as gnllluloc)1es, cl")1hrocytes, 

macrophagcs and I11cgakaryocytes. The next question is whether these (persistent) fetal cells 

might be implicated in the pathogenesis of preeclampsia andlor in the development of 

autoimmune disorders. 

In conclusion, the lise of fetal cells isolated from maternal blood remains a promising 

approach for the development of a non-invasive test. Nevcl1heless, after more than two 

decades of research numerous questions remain unsolved. i\'lost of these questions can be 

answered once technical problems have been overcome, and sensitivity of detection methods 

has increased, Only then, tetal cell detection in maternal blood may be applied as a screening 

lest for prenatal diagnosis. 
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Summary 

Summary 

Current methods for prenatal diagnosis of genetic abnormalities include chorionic villus 

sampling and amniocentesis. Although these invasive methods arc accurate, there is a small 

procedure-related risk for the fetus. The development of an equally reliable non-invasive 

prenatal diagnostic test using fetal blood cells that leak through the placenta into the maternal 

circulation would eliminate this small but significant risk. 

Chapter 1 comprises a literature appraisal about the current knowledge of fetal cells in 

maternal blood. The fetal cell types present in maternal blood that have been studicd by 

numerous investigators include fetal lymphoc)1es, granuloC)1es, trophoblast cells and 

nucleated red blood cells (NRBCs). Most altention has been focussed on the isolation of fetal 

NRBCs, since they arc abundantly present in the fetlls during the first trimester of pregnancy, 

they have a limited life span and Illay not persist from previolls pregnancies. Fetal NRBCs 

have been isolated using antibodies against both membrane-bound markers, including the 

transterrin receptor (CD?1) and glycophorin A (GPA) and intracellular antigens, like 

embl)'onic (HbE) and fetal (HbF) hemoglobin. Despite all effOlis to develop enrichment and 

purification strategies that would increase the detectability of tetal cells in a maternal blood 

sample, the number of fetal cells recovered still remains vel)' low. Two l1l'lior methods of cell 

separation enable fetal cell isolation from maternal blood: fluorescence-activated cell sorting 

(FACS) and magnetic-activated cell sorting (MACS). If tetal cells are conclusively isolated, 

genetic analysis of these cells include fluorescence il1 situ hybridization (FISH) using 

cIlrol1losome~specific probes for the detection of chromosomal abnormalities, and polymerase 

chain reaction (peR) to ampm).' unique fetal gene sequences for the detection of gene 

abnormalities. 

QUI' research has primarily been focussed on the technical and biological aspects of fetal cell 

isolation. Since the number of fetal cells in maternal blood is very low, their isolation is 

technically challenging and requires extensive cnrichment procedures before any analytical 

procedure can bc performed. In Chapter 2, we describe the use of in vitro cxpanded erythroid 

cells ill a model system for the isolation of fetal cells from maternal blood. ElY throb last cells 

derived from male umbilical cord blood cells were in vitro expanded to high cell numbers. 

These cells could be maintained in an erythroblastic stage and expressed high levels ofCD?l, 

a marker frcquently lIsed for the isolation of fctal cells from maternal blood. Two approaches 

of MACS isolation were evaluated using a mixture of in vitro expanded male NRBCs diluted 

in up to 1 in 400,000 female peripheral blood monollucleated cells. The first strategy was 

based Oil the direct enrichment of CD?1 + cells using a one-step MACS isolation protocol. 

This isolation procedure was compared with a previously published and commonly used 

two-step technique based on depletion of monoc)1es (CD14) and lymphocytes (CD45) 
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tollowed by the enrichment of CD71+ cells. The number of recovered male cells was 

determined using two-color FISH with X and Y chromosomal probcs. We demonstrated a 

significant two-fold higher yield of male NRBCs using the one-step enrichment protocol. 

Application of these isolation stl'ategies to matcrnal blood samples resulted in a similarly 

improved enrichment of male fetal cells after the direct enrichment of CD71+ cells. An 

interesting question remains as to whether the described expansion protocol for erythroid 

cells can also be used for expansion of fetal NR Bes derived from maternal blood samples. 

The idea to increase the number of fetnl cells from maternal blood by amplificntion or fetal 

hemopoietic progenitor cells has been discussed for a long time. If fetal cells could be 

stimulatcd to proliferate in culture, thc technical limitations of working with vcry small 

number of cells could be overcome. In Chapter 3, we evaluated the usefulness of the in vUro 

expansion of fetal hemopoietic progenitor cells (CD34+) from maternal blood samples tor 

diagnostic purposes. After ivlACS isolation, fetal cells are often contaminated with an exccss 

of maternal cells and the question was whether fetal cells are able to ovcrgrow the maternal 

component. Therefore, a model system was used in which limiting numbers of male 

CD34+ umbilical cord blood (UCB) cells werc diluted in lip to 400,000 fen,"lc 

CD34+ peripheral blood cells. \Ve demonstrated a 1500~fold increase of male UCB cells over 

the female peripheral blood component after 3 weeks of liquid culture, which also 

corresponded to the extent of expansion of CD34+ cells derivcd from 20-week fetal blood. 

Unf0l1unately, we were not able to confirm these results lIsing fetal CD34+ cells isolated 

from maternal blood samples obtained at 7-16 weeks of gcstation, indicating that hemopoietic 

progenitor cells do either not circulate in maternal blood before 16 weeks of gestation) or 

require different combinations and/or concentrations Ofc)10kines tor their in vitro expansion. 

The presence of fetal cells in maternal blood is supposed to be the result of a feto-maternal 

transfusion at the placental interface. The incidence of fetal cells in matcrnal blood has been 

reported to increase in chromosomally abnormal pregnancies, after chorionic villus sampling 

(Chapter 4), and in women with preeclampsia (Chapter 5). It has previously been rep0l1ed 

that the introduction of a biopsy ncedle into placental tissue to aspirate chorionic villi via the 

transabdominal route might induce a feto-maternnl transtlJsion. Such a transfusion has been 

demonstrated by elevated levels of maternal serum alpha-fetoprotein Icvels nfter chorionic 

villus sampling (CVS). In Chapter 4, we investigated whether this transfusion of alpha­

fetoprotein was accompanied by a concurrent transfusion of fetal NRBCs in the maternal 

circulntion. We isolated fetal CD71+ cells from maternal blood samples obtained betore and 

after chorionic villus sampling, aner depletion of maternal lymphoc)1es (CD45+ cells) and 

monoc)1cs (CD14+ cells). Analysis of these CD71+ t}actions revealcd an increase in the 

number of tetal cells in 10 out of 19 male pregnancies after the invasive procedure, which 

also correlated with elcvated maternal serum alpha~fetoprotein levels. Moreover, this 
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CVS-induced cellular transfusion may form an interesting in vivo model system, which call 

be used to improve isolation procedures and to study fetal cell dynamics and characteristics. 

Several recent reports suggest that fetal cell trafficking into the maternal circulation is 

disturbed in preeclampsia. Preeclampsia is a common, pregnancy specific disease defined by 

clinical findings of elevated blood pressure combined with proteinuria and edema. Although 

the etiology of preeclampsia is not known, there are indications that abnormal placentation 

and endothelial dysfunction are involved ill the pathogenesis of preeclampsia. In Chapter 5, 

we investigated whether this abnormal placentation results in a transfusion of fetal NRBCs in 

the maternal circulation of women with preeclampsia. We demonstrated a 30-fold higher 

number of fetal NRBCs ill women with preeclampsia compared to WOlllen with 

uncomplicated pregnancies, suggesting that fetal cell trafficking is enhanced in women with 

preeclampsia. Furthermore, this feto-maternal transfusion may provide insight into the 

pathophysiology of the disease. 

In conclusion, the isolation of fetal cells from maternal blood has proved to be technically 

challenging because of the low frequency of these cells in the maternal circulation requiring 

extensive enrichment procedures for their subsequent isolation. To be useful in prenatal 

diagnosis, fetal cells must be distinguished from the vast majority of maternal cells, they must 

be enriched to an acceptable level of purity~ and must then be identified as cells of fetal 

origin. One promising technique may be the il1 vitro expansion of fetal cells in order to 

overcome the technical limitations of working with vel)' small numbers of celis. Erythroid as 

well as other hemopoietic progenitor cells have been sllceessfully expanded, but the 

technique has to be fllliher improved. 

A major point of concern remains the possibility that fetal cells from previous pregnancies 

persist in the maternal circulation, not only in view of the development of a non-invasive 

prenatal diagnostic test, but also because of their immunological consequences. Especially in 

cases with an increased teto-matel11al transfllsion, fetal cell microchimerism may have 

immunological consequences and may subsequently result in the development of an 

(auto)iml11l1lle disease in these women. 

In conclusion, the use of tetal cells isolated from maternal blood remains a promising 

approach for the development of a non-invasive prenatal diagnostic test. Nevertheless, after 

more than two decades of research numerous questions remain unsolved. Most of these 

questions can be answered once technical problems have been overcol11c~ and the sensitivity 

of the detection methods has been improved. Only then, fetal cell detection in maternal hlood 

may be applied as a screening test for prenatal diagnosis. 
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De huidige methoden voor prenataie diagnostiek voor de detectie van genetische afwijkingen 

omvatten met name de vlokkentest en vruchtwaterpunctie. Hocwel deze invasieve melhoden 

zeer nauwkeurig zijn, is er loch een klein risico voor de foetus gerclatcerd aan de procedure. 

De ontwikkeling van een geIijkwaardig betrouwbare niet-invasieve prenatale diagnostische 

test zal dit kleine, maar significante risico elimineren. Bij deze test wordt gcbruik gemaakt 

van foetale cellen die via de placenta het perifere bloed van de moeder bereiken. 

Hoofdstuk 1 omvat een literatuurstudie over de huidige kennis van de isolatie van foetale 

cellen uit mocderlijk bloed. VerschiHende foetale celtypen circuleren in het moederlijke 

bloed, zoals foetale lymfocyten, granulocyten, trofoblastcellen en kernhouclende rode 

bloedcellen (KRBCs). De mceste aandacht wordt besteed aan de [oetale KRBCs, omdat zij in 

grote aantallen voorkomen in het llloederlijke bloed, met name in het eerste trimester. 

Bovendien hebben zij een korte levensduUf waardoor de aanwezigheid van KRBCs van een 

cerdere zwangerschap vrijwel uitgesloten is. Foetale KRBCs worden ge'isoleerd door gebruik 

te maken van antilichamen gerichl tegen lOwel membraan-gebonden merkers, zoals de 

transferrine receptor (CD71) en glycoforine A (GPA), als tegen intracellulaire antigenen, 

zoals embryonaal (HbE) en foetaal (HbF) hemoglobine. Ondanks aile inspanningen om 

verrijkings- en zuiveringsstrategieen te ontwikkelcn die het aanlal [oetale cellen in moederlijk 

bloed zouden vergroten, blijft het <Hmlal ge'isoleerJe 1'oelale cellen erg klein. 1\vce technieken 

die veel gebruikl worden voor de isolatie van foetale cellen uit moederlijk hi oed zijn: 

Fluorescent-Activated Cell Sorting (FACS) en Magnetic-Activated Cell Sorting (MACS). 

Indien foelale cellen daadwerkeJijk gdsoleerd zijn, worden deze cellen op gene tisch niveau 

gCi'dentificeerd. Chromosomale abnol'Inaliteiten worden gedetecteel'd middels fluorescentie ill 

shu hybridisatie (FISH) door gebruik Ie maken van chromosoom-spedfieke probes. De 

detectie vnn afwijkingen op genniveau geschiedt door middcl van amplitkatie van unieke 

1'oetale gensequenties met bchulp van de polymerase ketting reactie (PCR). 

Het onderzock beschreven in dit proefschrift richt zich met name op de technische en 

biologische aspecten van de isolatie vall foetale cellen uit mocderlijk bloed. Aangezicn het 

aanlal foetale cellen in l110edcrlijk bloed bijzonder klein is, wordt de isolatie van deze cellen 

bel11oeilijkt, en zijn geavanceerde verrijkingsmethoden noodzakelijk voordat foe tale cellen 

genetisch ge'identificcerd kunnen worden. In Hoofdstuk 2 wordt het gebruik van ill vitro 

geexpandeerde erythroide cellen in een 1110delsysteem voor de isolatie van foetale cellen uit 

moedcrlijk bloed beschreven, Erythroblast cellen ge'isoleerd uit mannelijk navelstrengbloed 

\verden in \'itro geexpandeerd lot grote aantallen, Deze cellen konden behouden worden in 

een erythroblast stadium en ze expresseren een hoog niveau van CD7l, een merkel' die vaak 

gcbruikt wordt voor de isolatie van fnetale cellen nit l110ederlijk bloed. Twee MACS 
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isolatiestrategiecn werden gecvalueerd door gebruik to maken vall een mCllgsei van ill vitro 

geexpandeerdc mallllelijkc KRBCs die 400,000 keel' verdund werden in kerndragcnde cellen 

atkomstig van perifeer biDed van vrouwelijkc, niet-zwangcre vrijwilligers, De eerste 

isolatiestmtegie was gebascerd 01' dc directe verrijking vall C071 + cellen door gebruik te 

maken van een eell-staps MACS isolatieprotoeol. Oeze isolatieprocedure werd vergeleken 

met een cerder besehrcven en een vank gebruikte methode, namelijk een twee-staps tcchniek 

waarbij cerst de monoeyten (COI4+) ell Iymfocyten (C045+) verwijderd worden, gevolgd 

door de verrijking Vall C071+ cellcn, Het aantal verkrcgen mannclijke CD71+ eellen lla 

MACS isolatie werd bepaald mel behllip van een lwee-klcurcn f-ISH met X- en 

Y-chromosomale probes, Het een-staps MACS pl'oloeol blcck een twce keel' zo grote 

opbrengsl vall mannelUke KRBCs 01' te levcrell dan de twee-staps strategic, Toepassing van 

beide isoiaticprotocollen 01' Illoederlijke bloedmonsters rcsulteerde in een vcrgelijkbaar 

verbeterde vcrrijking van Illannelijkc foetalc cellen na de direete verrijking van 

C071+ foctale cellen (een-staps protocol). Een interessante vmag is of het beschrevcn 

expansieprolocol voor el)1hroide cellen ook geblllikt kan woruen voor de expansie van 

foctale KRBCs gci'soleerd uit moederlijkc bloedmonsters, 

Het idee om hct beperkte aantal foetale ccllen uit moederlijk bloed te verlllenigvuldigen door 

toetale hemopoietische stamcellen (CD34+ cellen) te kwcken, wordt al een lange tijd 

besproken, Als toetale cellen gekwcckt kunnen worden, dan zouden de lechnische 

beperkillgcn door tc werken met hele kleillc aantallcn cellen omzeild kUllnen worden. In 

Hoofdstuk 3 wordt gcevalueerd of de in \'itro expansie van foetalc hemopoietische stamcellen 

uit Illoederlijkc bloedmonstcrs toegepast kan worden voor de ontwikkeling vall een 

niet~invasieve prenatole diagnostische tcst. Aangezien na i'vlACS isolatie vall foctale cellen 

uit 1110edcrlijk biDed vrijwel altijd cen ovennaat aan l110ederlijke ecllen aanwczig is, was de 

eerste vmag of de gC'isoleerde foetalc cellen in staat zijn om boven de Illoedcrlijke componcnt 

lIit te groeien. Om dit aall te {on en hebben we gcbruik gemaakt van een modelsystcem 

waarbU hele kleine aantallcn CD34+ stamecllen uit mallnelijk navelstrcng bloed 

400.000 maal verdulld zijn in CD34+ stmncellen afkomslig uit peri leer bloed vall een 

vrouwelijkc, !liet zwangere, volwassen vrijwilliger. Na drie wcken kwcken bleken de 

mannelijkc CD34+ stamcellen lIit navelstrcngbloed 1500 maal vcrmenigvuldigd tc Zijll in 

vergelijking tot de vrouwelijkc volwassen C034+ stamcellen. Deze expallsic van mannelijke 

C034+ nuvelstrcngbloed ccllen correspondeerde met de mate van expansie van 

C034+ cellcn afkomstig uit toetaal bloed van 20 weken, Expansie van toetale 

hell1opoietisehc stamcellcn (C034+) vcrkregen uit moederlijke bloedmonsters afgenomen 

tussen 7 en 16 we ken van de zwangerschap was echter niet sllccesvol. Dit betckent enerzijds 

uat toetalc hemopoietische stameellen niet aanwezig zijn ill het bloed van zwangcrcn VOOI' 

16 weken van de zWllngcrschap, of anderzijds dat andcl'c combinaties of concentralies van 
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groeifactoren noodzakclijk zijn voor de ill vitro expansie van foetalc stamcellen aanwezig in 

moederlijk bloed. 

De aanwezigheid van foctalc cellen in moedcrlijk bloed is Illogelijk het gcvolg van een 

ccllulairc tmnsfusic tussell moeder Cil kind (feto-matcrnale tmnsfusie) op het niveau van de 

placenta. Het is eerder beschrevcn dnt de frequcl1tic vall foetnle cellen in de mocdcrlijke 

circulatie vcrhoogd is wnnneel' het cen zwangerschap bctrcft met een chrolllosomaal 

afwijkcnd kind. Ook nn vlokkentcst (Hoofdstuk 4) en bij vrouwen mel pre-eclmnpsie 

(Hoofdstllk 5) wordt cen verhoogd aanlal foetale cellen gcvonden in het moederlijk bloed. 

Reccntelijk is gcblcken dnt de introductie van een biopticnaald in placenlaweefsel, 0111 

choriollvlokken 01' te zuigell vin een transabdomillale route, mogclijk cell feto-maternale 

transfusie veroOl'zaakt. Dit is aangetoond door de annwezigheid van vcrhoogde concentralies 

van het alfa-foetoprote'ine in moederlijk serum na het uitvoeren van een vlokkcntest. In 

Hoofdstuk 4 onderzoeken we of deze transfusie van foctale eiwitten samen gnat mct een 

tmnsfusie van foetalc KRBCs in de 1110ederlijke perifel'e circulatie. Foetale CD7I + cellen zijn 

gei'soleerd lIit moedcrJijke bloedmonstcrs die afgenolllen zijn zowcl VOOl' als na de 

vlokkentest. Aliereersl zijn de moederlijke lymfoc)1en (CD45+ cellen) en monocyten 

(CDI4+ cell en) gedepleteerd, gevolgd door de verrijking van CD71+ cellen middels 

MACS-isolntie. Analyse vtln de CD7I+ cclfracties toonde aan dat na de invasicvc ingrccp 

een verhoogd aantal foetale cellen aanwezig was in 10 vall de 19 zwangerschaPP'!Il. Deze 

vcrhoogde tnillsfusic van foetale cellen correleerde met l'en verhoogde concentratie van 

alfa-foetoproteInc in het moederlijke serum. Bovendien vormdc dcze door de vlokkentest 

ge't'nduceerde cellulaire transfusic een goed in vivo modelsysteem, dat gebruikt knn worden 

voor verbetering en optimalisatie van isolatieprocedurcs, cn VOOI' he! bestudercn vall de 

dynamiek cn karaktcristiekcn van toctale cellen in helmoederlijk bloed. 

In vCl'schiliende rcccnte studies is onderzocht of de uilwisseiing van foetale en Illoederlijke 

cellen verstoord is bij patienten met pre-eclampsie (zwangerschapsvcrgiftiging). 

Pre-eclampsie is een ernsligc, veelvoorkomendc aandoening in de zwangerschap, die 

gekcnmerkt wordl door vcrhoogde bloeddruk en eiwitverlies in de urine. Dc ontstaanswijzc 

van pre-eclampsic is onbekend, maar er zijn aanwijzingen dat abnormalc olltwikkeling van de 

placenta en vaatwl.1ndbeschadiging (cndotheel) bij de mocder cen belangrijke rol spelen. In 

Hoofdstuk 5 wordl ollderzocht of deze abnol'malc ontwikkeling van dc placenta rcsultecl1 in 

een transfusie van foetalc cellen ill de pcrifcre circulntie. In hel bloed van vrOllwell met 

prc-cclmnpsie blekcn 30 maal zovccl toetale KRBCs aanwezig te zijn in vergelijking met 

bloed van vrouwen met een ongecompliceerde zwallgcrschap. Oil sllggerecrl dat cr bij 

vrouwen met pre-eclampsie een verhoogde transfusie plaatsvindt van toetalc cellen. Mogelijk 

zou deze verhoogde feto-matelllale transfusie meer illzicht kunnen geven in de 

ontstaanswijze vall prc-eclmnpsie. 
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Concluderend kan gesteld worden dat de isolatie van foctale cellen uit Illoederlijk bloed 

crnstig bcmoeilijkt wordt door de zcer lage freqllcntie van deze cellen, am deze zecr 

zeldzame foctale cellen te isolcren zijn effeclieve verrijkingsmethodcn Iloodzakclijk, Voor de 

ontwikkclillg van eell nict~invasievc prenatale diagnostischc test Illoetcn foelalc cellen 

onderschcidcn worden van moederlijke cell en, vcrvolgens nlClcten ze ge'isoicerd wordell lot 

een accept abel zuivcrhcidniveau voor analyse, en tens lotte moclen ze gc'idcntiticeenJ worden 

als zijnde toetaal. Een veelbelovende technick is de ill vitro expansic van foetalc eellen 

waarmee de teehnische beperkingcn van het wcrkcn met zcer klcine aantllllen toetale cellen 

omzcild kUBnen wordell. Zowel foetale el)1hro'idc cellen als hel11opoietischc slmllcellen zijn 

rccentelijk sliecesvol geexpandccrd, Het blijft cehler noodzakelijk am dcze klonale expansie 

verdeI' te evalueren en te verbctcrcn, 

Een groat problcem bij dc isolatie vall foetale cellell uit mocdcrlijk bloed blijfl eehler de 

mogelijkhcid dat toetale hemopoietische eellell van eell cerdere zwangcrsehap blijven 

circuleren in de mocderlijke circulatie, Dit is niet aileen belangrijk met het oog op de 

ontwikkeling vall cen betrouwbare niet~invasieve prenntale diagnostische test, maar zekcr 

001\ met bctrekking tot de immul1ologische reaetie die de aanwczigheid van I'oetale cellen 

lllogeJijk vcroOl~Laakt. Met name in gevallen van een verhoogde fcto-maternalc transfusie kan 

microehimcrisllle van foetalc cellen il11l1lullologischc eonsequenties hebbcll, en l110gelijk 

resultercn in de ontwikkeling van een (auto)immuunziekte bij deze vrouwen, 

Dc ontwikkeling van een niet~invasieve prenatale test door gebruik te maken van toetalc 

cellen uit Illoederlijk bloed blijt1 cen veelbclovende techniek, Desalnieltemin zijn na Illcer 

dan 20 jaar onderzoek nag steeds een aantal belangrijke vragen onbeantwoord, De meeste 

vragen zullcn bcantwoord worden wallneer de technische problem en van foctale cclisolatie 

opgclost zijn, en de sensitiviteit van de detectiemethoden vcrbeterd is, HopelUk zal dam"door 

in de toekomst toctnlc celdetectic gebruikt kUl1nen gaan worden als screeningstest voor 

prenatale diagnostiek, 
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AGM 
BFU-E 

CD71 

CFS 

CFU-E 

CVS 

FACS 

FB 

FISH 
FMT 
OPA 
HbA 
HbE 

HbF 

HELLP 
HLA 
KRBCs 

MACS 

MSAFP 
NRBCs 

PB 
PCR 

RhD 

SRY 

TA-CVS 
liCB 

Aorta-gonad-mcsoncphros 

Erythroid burst-forming unit 

Transferrin receptor 

Charge flow separation 

Erythroid colony-forming unit 

Chorionic villus sampling 

Fluorescence activated cell sorting 

Fetal blood 

Fluorescence ;,/ shu hybridization 

Felo-maternal transfusion 

Glycophorin A 

Adult hemoglobin 

Embryonic hemoglobin 

Fetal hemoglobin 

Hemolysis, elevated liver enzymes, and low platelets 

Human leukocyte antigen 

Kernhoudcnde rode bloedcellen 

Magnetic activated cell sorting 

Maternal serum alpha-fetoprotein 

Nucleated red blood cells 

Peripheral blood 

Polymerase chain reaction 

Rhesus D 

Sex-determining region Y 

Transabdominal chorionic villus sampling 

Umbilical cord blood 
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ahijd weer een gaatje in je agenda te vinden am met mij over de resullaten te praten. 

Peter in 't Veld wil ik bedanken vaal' zijn bcgclciding in de eerste fase van het onderzoek. 

Beste Peter, ik heb vee I van je geleerd. lk vond het zeer spijtig dat je besloot naal' Brllssel te 

vCl1rekken, maar gelukkig was je na je vertrek ahijd bereid mijn manuscripten te beoordelen 

en van hitiek te voorzicn. 

Ik ben 01' vee I labs "Ie gasl" gewccst, was overal een vrccmdc cend in de bijt, Illaar ik heb dat 

zeker nooit zo ervaren!!! De meesle lijd heb ik op het ciwit-lab van de Klinische Genetica 

doorgebracht en dat was een gewcldigc lijd, danKzij mijn fijne eollega's. Ueve Manou, jij 

was mijn eerste kamergenootje. Van jou heb ik aile fijne kneepjes van het "compulervak" 

gclcerd (en Ill! nog steeds!!!), en ik ben blij dat ik die weer op anderen kan overdragen. Oak 

naas! het werk dcden we vcle dingcn samen: we squash(d)en en zongen erop los. Ik ben zcer 

blij dat jc dit bockje doorgeworslcld hebt op zock naal' "folltjes" alvorells het naar de drukkcr 

ging en dat jij mijll paranimfwilt zijn!!! Lieve Leontine, alias CorIcone (hoc ik er aan kOI11 

weet ik niel meer, volgens mij heeft het iets met een soap Ie makcn?), bedankt VOOI' 

al die ontspanncn "ten-thirty cappuccino times", de gezelligheid op het lab, tijdens 

balletvoorstellingen, BBQs, etc, Ik ben blij dat oak jij mijn paranimf wilt zijn. Ciao Filippo 

(papa pippa, tlipjc), jammer dat je weg bent, het is wei erg stil in OilS hokje. Ik beloofje dat 
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ik nu weer meer tijd zal hebben om gezellig te gaan lunchen, Karin, hartelijk dank voor je 

hulp tijdens mijn onderzoek, Toen je weg was kwam ik er achter hoevccl werk je verzet hebt, 

oak al was het maar voor 2 dagen in de week!! Dik, bedankt dat jij daarna samen met mij de 

eindsprint hebt willen inzetten, Oak aile overige (ex-)collega':-i van het eiwitlab wil ik 

bedanken: Marian en Elly (bedankl dat jullie de receptic willen coordineren), Cecile ('t is zo 

stil zonder jOll), Frans, Gracia, Andre, Arnold, Jocp (bedankt voor je nuchtere kijk op liel 

leven en de vele pep-talks (het lijkt weI of iedereen van "ons kantoor" wegvlllcht)), 

MarK (heb ik het goed geschreven?), Miriam, Paul, Joris, Fcnna, Debby, Agnes (de kleine 

zal er IlU wei zijn!l), Coleta (zuurkoo! met vette jus,.,), Adrie, Daniela (ciao, comme staja, 

bienne, spannend he). 

De collegu's van het prenatale lab wil ik harlelijk danken voor het transporteren van de vele 

huisjes bloed en de behulpzaamhcid aIs ik weer eens wilde weten of het een jongetje of een 

meisje was, Beste Armando, jij was onmisbaar bij de lotstandkoming van dit proefschrift, 

Mede dankzij jou ziet elit boekje er zo mooi uit, waren de dia's, piaatjcs en figuren (zelfs met 

een log-schaal!!) altijd perfect en ga zo maar door, Ik sta nog heel wat kilo's drop bij jon in 

het krijt!!! Cardi en Diane, bedankt voor het bijbrengen van de grondbeginselen van de FISH. 

Cardi, bedankl voor je helpende hand ais ik weer eens gegevens nodig had, en vee I succes 

met schrijven (misschien moet je toch cens overstappen op 'Word?), Beste Diane, bedankt 

voor de gezellige, maar vooral leerzame uurtjes, Ik hoop dat we in de toekomst nog veel van 

elkaar kunnen leren. Frans, bedankt voor de leerzame discussies en de gastvrijheid op het 

prenatale lab, Annet en Bert (postnallllll), bedankt voor jullie nultige "FISH" en "mie" 

adviezen, 

Ecn aanlal medewerkers bij de afdeling Hcmalologie wil ik bedankcn voor de gezelligc lijd 

die ik daar heb gehad, Marieke (von Lindem), bedankt voor je hnlp bij de erythroblastkweken 

en je aanstekelijke enthousiasme voor het onderzoek. Paula en Nuray, bcdankt voor jullie 

"stamcelkweektrainingen", en veel Sllcces bij de afronding vaIl jullie onderzoek. Irene, 

\Vendy, Robin, Alexandra, Angeliyue en Elwin: bedankt voor de gezeIligheid op het lab, 

Het onderzoek zoaIs beschreven in dit proefschrift had niet uitgevoerd kunnen worden zonder 

de bereidwilligheid van de vele patiCnlen die bloed hebben afgestaan, Ik wil hen daarvoor 

hartelijk danken, De medewerkers van de afdeling Verloskunde en Vrouwenziekten (sector 

Prcnatale Diagnosliek) wiI ik bedanken voor hun bereidheid am patienlcn Ie motiveren bloed 

at' te staan voor mijn onderzoek. Helen Brandenburg, Hajo \Vildschut, Annemarie 

Westenreld, Roger Heydanus, Titia Cohen-Overbeck, Nicolette den Hollander, \VilIy Visser 

en Christi<II1I1e de Groot: bedankt voor jullie bijdnlge nan het onderzoek. 

Tijdens een proTl1otie-onderzoek zijn er vele mensen die een belangrijke rol or de 

achtergrond speIen, Sylvia (bedankt dat je de afspraken mel de professor zo perfect regelde), 

Jacqueline, Jeanette, Cilesta, Joyce en Hanneke: bcdankt voor aHe hulp bij secretarieel werk 

en voor het beantwoorden van de vele vragen die ik op jullie afvuurde (moet de uitgaande 
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post IlU ill ofuit de zak?). Zonder schoon glaswerk en andere steriele benodigdheden bereikje 

niets in het onderzoek. \Vilma, Jopie, Joke, Prema en Rob, hm1cIijk bcdankt voor aI het 

"keukeuwerk". Rein, l'vlelle en Mieke, bedankt voor dc vclc bcstcliingen. Tom cn Ruuu, 

bedankt voor dc fotografische ondcrstcuning. 

Het laatste woord richt ik tot de bclangrijkste mensen in mijll leven. Licve mciden (de 

Saskiaatjes Henzel, Knoop en Passchier, Debby, Chava, Stephanie en Helen). Dc vrielldschap 

die wij hebbcl1 is uniek!!! \Ve kennen elkaar al bijna 20 jaar, hebben lief en Iced met elkaar 

gcdecld CII ik hoop dOlt we dit nog lang zullen doell. 13edankt voor de broodnodige 

ontspanning tus~cn de versehilicnde drukke beurijvcn door!!! 

Lievc Jolandt, ondanks dat wc elkaar niet meer zo vaak zicn (Brazilie is weI heel vel' weg), is 

onzc vriendschap altijd geblevell. Ik ben blij dat ik je hcb leren kennen en ik hoop dat jc cr dc 

13c bij kan zijn. 

Lieve mam en pap, bcdankt dat juliic mij de 1110gelijkheid hebben gegcven 0111 te studercn. 

Ell pap, jc mag het nog een keel' zeggen, maar dam"na weet ik wei dat je trots op mij bent. Ik 

bell oak trots op jullie en zekcr als ik naar de ol1lslag van dit proefschrift kijk. De combinatic 

van mam's miistieke kUllsten en papa's computerkul1sten hebben de kroan op mijn 

levenswerk gezet. 

Lieve Ingmar, ik weet niet wat ik zonder jotl ZOU moeten. Dit boekje draag ik op aan jOll, 

omdat zonder jou onvoorwaardelijke stelln dit boekje er nooi! gekomen zou zijn . .Ie hebt het 

zwaar te verduren gehad met mij, als ik me opsloot in het studeerhok, de computer d,lg en 

naeht bezetle en me onuitstaanbaar gedroeg. De laatste tijd Was het de promotie waal' alles 

011 draaide, maar het klusje is IlU geklaard, we kunnen nu van andere dingen gaan gcnieten. 

Ik hoop dat we samen hcel aud 1110gCI1 woruen. 
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