16 research outputs found

    Late Effects of Therapy, Stigmatization and Social Reintegration following Childhood Cancer Survival in Kenya: A Case Report

    Get PDF
    Childhood cancer survival is increasing in low- and middle-income countries like Kenya, which comes with a new healthcare challenge: late effects and quality-of-life of survivors. A case was studied to depict a Kenyan Hodgkin lymphoma survivor, illustrating some of the childhood cancer survivors' difficulties in Kenya. Late effects of therapy, stigmatization and social reintegration were explored. The investigators reviewed medical records and used semi-structured interviews and stigma assessments using the Social Impact Scale. The survivor developed severe pulmonary hypertension during treatment with ABVD and salvage protocols. Three years after treatment, the patient experienced chemotherapy-induced late effects (chronic heart disease) that hindered personal care, social activities and job opportunities and required follow-up. Stigmatization by the community burdened his family life and marital prospects. This case report is one of the first that testifies of combined medical and psychosocial challenges that childhood cancer survivors may face in sub-Saharan Africa and underlines the need for a holistic approach

    Selective Interactions of O-Methylated Flavonoid Natural Products with Human Monoamine Oxidase-A and -B

    Get PDF
    A set of structurally related O-methylated flavonoid natural products isolated from Senecio roseiflorus (1), Polygonum senegalense (2 and 3), Bhaphia macrocalyx (4), Gardenia ternifolia (5), and Psiadia punctulata (6) plant species were characterized for their interaction with human monoamine oxidases (MAO-A and -B) in vitro. Compounds 1, 2, and 5 showed selective inhibition of MAO-A, while 4 and 6 showed selective inhibition of MAO-B. Compound 3 showed ~2-fold selectivity towards inhibition of MAO-A. Binding of compounds 1-3 and 5 with MAO-A, and compounds 3 and 6 with MAO-B was reversible and not time-independent. The analysis of enzyme-inhibition kinetics suggested a reversible-competitive mechanism for inhibition of MAO-A by 1 and 3, while a partially-reversible mixed-type inhibition by 5. Similarly, enzyme inhibition-kinetics analysis with compounds 3, 4, and 6, suggested a competitive reversible inhibition of MAO-B. The molecular docking study suggested that 1 selectively interacts with the active-site of human MAO-A near N5 of FAD. The calculated binding free energies of the O-methylated flavonoids (1 and 4-6) and chalcones (2 and 3) to MAO-A matched closely with the trend in the experimental IC50\u27s. Analysis of the binding free-energies suggested better interaction of 4 and 6 with MAO-B than with MAO-A. The natural O-methylated flavonoid (1) with highly potent inhibition (IC50 33 nM; Ki 37.9 nM) and \u3e292 fold selectivity against human MAO-A (vs. MAO-B) provides a new drug lead for the treatment of neurological disorders

    Antimycoplasmal Activities of Compounds from Solanum aculeastrum and Piliostigma thonningii against Strains from the Mycoplasma mycoides Cluster

    No full text
    Infections caused by Mycoplasma species belonging to the ‘mycoides cluster’ negatively affect the agricultural sector through losses in livestock productivity. These Mycoplasma strains are resistant to many conventional antibiotics due to the total lack of cell wall. Therefore, there is an urgent need to develop new antimicrobial agents from alternative sources such as medicinal plants to curb the resistance threat. Recent studies on extracts from Solanum aculeastrum and Piliostigma thonningii revealed interesting antimycoplasmal activities hence the motivation to investigate the antimycoplasmal activities of constituent compounds. The CH2Cl2/MeOH extracts from the berries of S. aculeastrum yielded a new ÎČ-sitosterol derivative (1) along with six known ones including; lupeol (2), two long-chain fatty alcohols namely undecyl alcohol (3) and lauryl alcohol (4); two long-chain fatty acids namely; myristic acid (5) and nervonic acid (6) as well as a glycosidic steroidal alkaloid; (25R)-3ÎČ-O-α-L-rhamnopyranosyl-(1→2)-O-[α-L-rhamnopyranosyl-(1→4)]-ÎČ-D-glucopyranosyloxy-22α-N-spirosol-5-ene (7) from the MeOH extracts. A new furan diglycoside, (2,5-D-diglucopyranosyloxy-furan) (8) was also characterized from the CH2Cl2/MeOH extract of stem bark of P. thonningii. The structures of the compounds were determined on the basis of spectroscopic evidence and comparison with literature data. Compounds 1, 3, 4, 7, and 8 isolated in sufficient yields were tested against the growth of two Mycoplasma mycoides subsp. mycoides(Mmm), two M. mycoides. capri (Mmc), and one M. capricolum capricolum (Mcc) using broth dilution methods, while the minimum inhibitory concentration (MIC) was determined by serial dilution. The inhibition of Mycoplasma in vitro growth was determined by the use of both flow cytometry (FCM) and color change units (CCU) methods. Compounds 4 and 7showed moderate activity against the growth of Mmm and Mmc but were inactive against the growth of Mcc. The lowest MIC value was 50 ÎŒg/ml for compound 7 against Mmm. The rest of the compounds showed minimal or no activity against the strains of Mycoplasma mycoides tested. This is the first report on the use of combined FCM and CCU to determine inhibition of in vitro growth of Mycoplasma mycoides. The activity of these compounds against other bacterial strains should be tested and their safety profiles determined

    Selective Interactions of O-Methylated Flavonoid Natural Products with Human Monoamine Oxidase-A and -B

    No full text
    A set of structurally related O-methylated flavonoid natural products isolated from Senecio roseiflorus (1), Polygonum senegalense (2 and 3), Bhaphia macrocalyx (4), Gardenia ternifolia (5), and Psiadia punctulata (6) plant species were characterized for their interaction with human monoamine oxidases (MAO-A and -B) in vitro. Compounds 1, 2, and 5 showed selective inhibition of MAO-A, while 4 and 6 showed selective inhibition of MAO-B. Compound 3 showed ~2-fold selectivity towards inhibition of MAO-A. Binding of compounds 1–3 and 5 with MAO-A, and compounds 3 and 6 with MAO-B was reversible and not time-independent. The analysis of enzyme-inhibition kinetics suggested a reversible-competitive mechanism for inhibition of MAO-A by 1 and 3, while a partially-reversible mixed-type inhibition by 5. Similarly, enzyme inhibition-kinetics analysis with compounds 3, 4, and 6, suggested a competitive reversible inhibition of MAO-B. The molecular docking study suggested that 1 selectively interacts with the active-site of human MAO-A near N5 of FAD. The calculated binding free energies of the O-methylated flavonoids (1 and 4–6) and chalcones (2 and 3) to MAO-A matched closely with the trend in the experimental IC50′s. Analysis of the binding free-energies suggested better interaction of 4 and 6 with MAO-B than with MAO-A. The natural O-methylated flavonoid (1) with highly potent inhibition (IC50 33 nM; Ki 37.9 nM) and >292 fold selectivity against human MAO-A (vs. MAO-B) provides a new drug lead for the treatment of neurological disorders

    Selected Ethno-medicinal plants from Kenya with in vitroactivity against major African livestock pathogens belonging to the “Mycoplasma mycoides cluster’

    No full text
    Members of ‘Mycoplasma mycoides cluster’ are important ruminant pathogens in Africa. Diseases caused by these Mycoplasma negatively affect the agricultural sector especially in developing countries through losses in livestock productivity, mortality and international trade restrictions. There is therefore urgent need to develop antimicrobials from alternative sources such as medicinal plants to curb these diseases. In Kenya smallholder farmers belonging to the Maasai, Kuria and Luo rely on traditional Kenyan herbals to treat respiratory symptoms in ruminants. In the current study extracts from some of these plants were tested against the growth of members of Mycoplasma mycoides cluster

    In silico

    No full text
    Human arboviral diseases have emerged or re-emerged in numerous countries worldwide due to a number of factors including the lack of progress in vaccine development, lack of drugs, insecticide resistance in mosquitoes, climate changes, societal behaviours, and economical constraints. Thus, Aedes aegypti is the main vector of the yellow fever and dengue fever flaviviruses and is also responsible for several recent outbreaks of the chikungunya alphavirus. As for the other mosquito species, the A. aegypti control relies heavily on the use of insecticides. However, because of increasing resistance to the different families of insecticides, reduction of Aedes populations is becoming increasingly difficult. Despite the unquestionable utility of insecticides in fighting mosquito populations, there are very few new insecticides developed and commercialized for vector control. This is because the high cost of the discovery of an insecticide is not counterbalanced by the ‘low profitability’ of the vector control market. Fortunately, the use of quantitative structure–activity relationship (QSAR) modelling allows the reduction of time and cost in the discovery of new chemical structures potentially active against mosquitoes. In this context, the goal of the present study was to review all the existing QSAR models on A. aegypti. The homology and pharmacophore models were also reviewed. Specific attention was paid to show the variety of targets investigated in Aedes in relation to the physiology and ecology of the mosquito as well as the diversity of the chemical structures which have been proposed, encompassing man-made and natural substances
    corecore