9,053 research outputs found

    Technique for extending the frequency range of digital dividers

    Get PDF
    A technique for extending the frequency range of a presettable digital divider is described. The conventional digital divider consists of several counter stages with the count of each stage compared to a preselected number. When the counts for all stages are equal to the preselected numbers, an output pulse is generated and all stages are reset. For high input frequencies, the least significant stage of the divider has to be reset in a very short time. This limits the frequency that can be handled by the conventional digital divider. This invention provides a technique in which the second least significant and higher stages are reset and the least significant stage is permitted to free-run. Hence, the time in which the reset operation can be performed is increased thereby extending the frequency range of the divider

    The effects of centrifuge radius on the performance of entry tasks

    Get PDF
    Effects of centrifuge radius on entry task performance - discrete response task, tracking task, and transfer of training effect

    A system for aerodynamic design and analysis of supersonic aircraft. Part 1: General description and theoretical development

    Get PDF
    An integrated system of computer programs was developed for the design and analysis of supersonic configurations. The system uses linearized theory methods for the calculation of surface pressures and supersonic area rule concepts in combination with linearized theory for calculation of aerodynamic force coefficients

    A computational system for aerodynamic design and analysis of supersonic aircraft. Part 1: General description and theoretical development

    Get PDF
    An integrated system of computer programs was developed for the design and analysis of supersonic configurations. The system uses linearized theory methods for the calculation of surface pressures and supersonic area rule concepts in combination with linearized theory for calculation of aerodynamic force coefficients. Interactive graphics are optional at the user's request. Schematics of the program structure and the individual overlays and subroutines are described

    Atmospheric variability and air-sea interaction

    Get PDF
    The topics studied include: (1) processing of Northern Hemispheric precipitation data, in order to fill in the transition seasons to provide a continuous 40 year data base on the variability of continental precipitation; (2) comparison of seasonally averaged fields of sea surface temperature obtained from ship observations in the North Atlantic and North Pacific in 1970 with the corresponding fields inferred from satellite observations; (3) estimation of seasonal average of total precipitable water at those admittedly few oceanic stations where repeated vertical soundings were made in 1970 and comparison with corresponding values inferred from satellite measurements; (4) comparison of seasonally averaged evaporation fields determined from ground based observations in 1970 with the field of divergence of the seasonal total horizontal water vapor flux inferred from satellite total water measurements and NMC wind data for the lower troposphere; (5) examination of meaning of convection-inversion index

    Aerodynamic design and analysis system for supersonic aircraft. Part 1: General description and theoretical development

    Get PDF
    An integrated system of computer programs has been developed for the design and analysis of supersonic configurations. The system uses linearized theory methods for the calculation of surface pressures and supersonic area rule concepts in combination with linearized theory for calculation of aerodynamic force coefficients. Interactive graphics are optional at the user's request. This part presents a general description of the system and describes the theoretical methods used

    A system for aerodynamic design and analysis of supersonic aircraft. Part 4: Test cases

    Get PDF
    An integrated system of computer programs was developed for the design and analysis of supersonic configurations. The system uses linearized theory methods for the calculation of surface pressures and supersonic area rule concepts in combination with linearized theory for calculation of aerodynamic force coefficients. Interactive graphics are optional at the user's request. Representative test cases and associated program output are presented

    Wind tunnel test results of a new leading edge flap design for highly swept wings, a vortex flap

    Get PDF
    A leading edge flap design for highly swept wings, called a vortex flap, was tested on an arrow wing model in a low speed wind tunnel. A vortex flap differs from a conventional plain flap in that it has a leading edge tab which is counterdeflected from the main portion of the flap. This results in intentional separation at the flap leading edge, causing a vortex to form and lie on the flap. By trapping this vortex, the vortex flap can result in significantly improved wing flow characteristics relative to conventional flaps at moderate to high angles of attack, as demonstrated by the flow visualization results of this tests

    A system for aerodynamic design and analysis of supersonic aircraft. Part 3: Computer program description

    Get PDF
    The computer program documentation for the design and analysis of supersonic configurations is presented. Schematics and block diagrams of the major program structure, together with subroutine descriptions for each module are included

    Aerodynamic design and analysis system for supersonic aircraft. Part 2: User's manual

    Get PDF
    An integrated system of computer programs for supersonic configurations is described. An explanation of system usage, the input definitions, and example output are included. For Part 1, see N75-18185; for Part 3, see N75-18186
    corecore