62 research outputs found
Fine-Tuning Roles of Endogenous Brain-Derived Neurotrophic Factor, TrkB and Sortilin in Colorectal Cancer Cell Survival
International audienceBACKGROUND: Neurotrophin receptors were initially identified in neural cells. They were recently detected in some cancers in association with invasiveness, but the function of these tyrosine kinase receptors was not previously investigated in colorectal cancer (CRC) cells. METHODS AND FINDINGS: We report herein that human CRC cell lines synthesize the neural growth factor Brain-derived neurotrophic factor (BDNF) under stress conditions (serum starvation). In parallel, CRC cells expressed high- (TrkB) and low-affinity (p75(NTR)) receptors at the plasma membrane, whereas TrkA and TrkC, two other high affinity receptors for NGF and NT-3, respectively, were undetectable. We demonstrate that BDNF induced cell proliferation and had an anti-apoptotic effect mediated through TrkB, as assessed by K252a, a Trk pharmacologic inhibitor. It suppressed both cell proliferation and survival of CRC cells that do not express TrkA nor TrkC. In parallel to the increase of BDNF secretion, sortilin, a protein acting as a neurotrophin transporter as well as a co-receptor for p75(NTR), was increased in the cytoplasm of primary and metastatic CRC cells, which suggests that sortilin could regulate neurotrophin transport in these cells. However, pro-BDNF, also detected in CRC cells, was co-expressed with p75(NTR) at the cell membrane and co-localized with sortilin. In contrast to BDNF, exogenous pro-BDNF induced CRC apoptosis, which suggests that a counterbalance mechanism is involved in the control of CRC cell survival, through sortilin as the co-receptor for p75(NTR), the high affinity receptor for pro-neurotrophins. Likewise, we show that BDNF and TrkB transcripts (and not p75(NTR)) are overexpressed in the patients' tumors by comparison with their adjacent normal tissues, notably in advanced stages of CRC. CONCLUSION: Taken together, these results highlight that BDNF and TrkB are essential for CRC cell growth and survival in vitro and in tumors. This autocrine loop could be of major importance to define new targeted therapies
Imbalance of neurotrophin receptor isoforms TrkB-FL/TrkB-T1 induces neuronal death in excitotoxicity
A better understanding of the mechanisms underlying neuronal death in cerebral ischemia is required for the development of stroke therapies. Here we analyze the contribution of the tropomyosin-related kinase B (TrkB) neurotrophin receptor to excitotoxicity, a primary pathological mechanism in ischemia, which is induced by overstimulation of glutamate receptors of the N-methyl-D-aspartate type. We demonstrate a significant modification of TrkB expression that is strongly associated with neurodegeneration in models of ischemia and in vitro excitotoxicity. Two mechanisms cooperate for TrkB dysregulation: (1) calpain-processing of full-length TrkB (TrkB-FL), high-affinity receptor for brain-derived neurotrophic factor, which produces a truncated protein lacking the tyrosine-kinase domain and strikingly similar to the inactive TrkB-T1 isoform and (2) reverse regulation of the mRNA of these isoforms. Collectively, excitotoxicity results in a decrease of TrkB-FL, the production of truncated TrkB-FL and the upregulation of TrkB-T1. A similar neuro-specific increase of the TrkB-T1 isoform is also observed in stroke patients. A lentivirus designed for both neuro-specific TrkB-T1 interference and increased TrkB-FL expression allows recovery of the TrkB-FL/TrkB-T1 balance and protects neurons from excitotoxic death. These data implicate a combination of TrkB-FL downregulation and TrkB-T1 upregulation as significant causes of neuronal death in excitotoxicity, and reveal novel targets for the design of stroke therapies
Disclosure of cholesterol recognition motifs in transmembrane domains of the human nicotinic acetylcholine receptor
Cholesterol influences ion-channel function, distribution and clustering in the membrane, endocytosis, and exocytic sorting of the nicotinic acetylcholine receptor (AChR). We report the occurrence of a cholesterol recognition motif, here coined “CARC”, in the transmembrane regions of AChR subunits that bear extensive contact with the surrounding lipid, and are thus optimally suited to convey cholesterol-mediated signaling from the latter. Three cholesterol molecules could be docked on the transmembrane segments of each AChR subunit, rendering a total of 15 cholesterol molecules per AChR molecule. The CARC motifs contribute each with an energy of interaction between 35 and 52 kJ.mol−1, adding up to a total of about 200 kJ.mol−1 per receptor molecule, i.e. ∼40% of the lipid solvation free energy/ AChR molecule. The CARC motif is remarkably conserved along the phylogenetic scale, from prokaryotes to human, suggesting that it could be responsible for some of the above structural/functional properties of the AChR
Temozolomide induces senescence but not apoptosis in human melanoma cells
Temozolomide (TMZ), a DNA alkylating agent used in the treatment of melanoma, is believed to mediate its effect by addition of a methyl group to the O6 position of guanine in DNA. Resistance to the agent may be in part due to the activity of O6-methylguanine-DNA methyl transferase (MGMT). In the present study, we show that sensitivity of melanoma cells to TMZ was dependent on their p53 status and levels of MGMT. Analysis of the mechanisms underlying reduced viability showed no evidence for induction of apoptosis even though marked levels of apoptosis was seen in TK6 lymphoma cells. Sensitivity of melanoma cells was associated with p53-dependent G2/M cell cycle arrest and induction of senescence. To verify the role of p53, the assays were repeated in presence of pifithrin-α, an inhibitor of p53. This resulted in increased viability of melanoma cells with wild-type p53 and reversed G2/M cell cycle arrest. Paradoxically, apoptosis was increased in melanoma but decreased as expected in TK6 lymphoma cells. These results are consistent with the view that TMZ is relatively ineffective against melanoma due to defective apoptotic signalling resulting from activation of p53. The nature of the defects in apoptotic signalling remains to be explored
Synergistic Activation of Dopamine D1 and TrkB Receptors Mediate Gain Control of Synaptic Plasticity in the Basolateral Amygdala
Fear memory formation is thought to require dopamine, brain-derived neurotrophic factor (BDNF) and zinc release in the basolateral amygdala (BLA), as well as the induction of long term potentiation (LTP) in BLA principal neurons. However, no study to date has shown any relationship between these processes in the BLA. Here, we have used in vitro whole-cell patch clamp recording from BLA principal neurons to investigate how dopamine, BDNF, and zinc release may interact to modulate the LTP induction in the BLA. LTP was induced by either theta burst stimulation (TBS) protocol or spaced 5 times high frequency stimulation (5xHFS). Significantly, both TBS and 5xHFS induced LTP was fully blocked by the dopamine D1 receptor antagonist, SCH23390. LTP induction was also blocked by the BDNF scavenger, TrkB-FC, the zinc chelator, DETC, as well as by an inhibitor of matrix metalloproteinases (MMPs), gallardin. Conversely, prior application of the dopamine reuptake inhibitor, GBR12783, or the D1 receptor agonist, SKF39393, induced robust and stable LTP in response to a sub-threshold HFS protocol (2xHFS), which does not normally induce LTP. Similarly, prior activation of TrkB receptors with either a TrkB receptor agonist, or BDNF, also reduced the threshold for LTP-induction, an effect that was blocked by the MEK inhibitor, but not by zinc chelation. Intriguingly, the TrkB receptor agonist-induced reduction of LTP threshold was fully blocked by prior application of SCH23390, and the reduction of LTP threshold induced by GBR12783 was blocked by prior application of TrkB-FC. Together, our results suggest a cellular mechanism whereby the threshold for LTP induction in BLA principal neurons is critically dependent on the level of dopamine in the extracellular milieu and the synergistic activation of postsynaptic D1 and TrkB receptors. Moreover, activation of TrkB receptors appears to be dependent on concurrent release of zinc and activation of MMPs
Dose finding and O6-alkylguanine-DNA alkyltransferase study of cisplatin combined with temozolomide in paediatric solid malignancies
Cisplatin may have additive activity with temozolomide due to ablation of the DNA repair protein O6-alkylguanine-DNA alkyltransferase (MGMT). This phase I/II study determined recommended combination doses using the Continual Reassessment Method, toxicities and antitumour activity in paediatric patients, and evaluated MGMT in peripheral blood mononuclear cells (PBMCs) in order to correlate with haematological toxicity. In total, 39 patients with refractory or recurrent solid tumours (median age ∼13 years; 14 pretreated with high-dose chemotherapy, craniospinal irradiation, or having bone marrow involvement) were treated with cisplatin, followed the next day by oral temozolomide for 5 days every 4 weeks at dose levels 80 mg m−2/150 mg m−2 day−1, 80/200, and 100/200, respectively. A total of 38 patients receiving 113 cycles (median 2, range 1–7) were evaluable for toxicity. Dose-limiting toxicity was haematological in all but one case. Treatment-related toxicities were thrombocytopenia, neutropenia, nausea-vomiting, asthenia. Hearing loss was experienced in five patients with prior irradiation to the brain stem or posterior fossa. Partial responses were observed in two malignant glioma, one brain stem glioma, and two neuroblastoma. Median MGMT activity in PBMCs decreased after 5 days of temozolomide treatment: low MGMT activity correlated with increased severity of thrombocytopenia. Cisplatin–temozolomide combinations are well tolerated without additional toxicity to single-agent treatments; the recommended phase II dosage is 80 mg m−2 cisplatin and 150 mg m−2 × 5 temozolomide in heavily treated, and 200 mg m−2 × 5 temozolomide in less-heavily pretreated children
Chronic administration of the delta opioid receptor agonist (+)BW373U86 and antidepressants on behavior in the forced swim test and BDNF mRNA expression in rats
Selective delta opioid receptor agonists have been shown to produce antidepressant-like behavioral effects and increase brain-derived neurotrophic factor (BDNF) mRNA expression when given acutely, but the chronic effects of delta agonists have been less well characterized.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46371/1/213_2005_Article_113.pd
- …