182 research outputs found

    Epstein-Barr Virus and Malaria Interactions: Immunology Perspective

    Get PDF
    Epstein-Barr Virus can cause various diseases, from acute inflammatory diseases such as fatal or chronic EBV infection, infectious mononucleosis as well as lymphoid and epithelial cancer, various autoimmune diseases, and also could interact with malaria. As EBV infects 95% of the world population, and more than 30% are infected with the protozoan parasite, with more than 500,000 deaths due to malaria cases. It is important to understand how EBV dysregulates the immune system, especially when the virus is interacting with other pathogens such as malaria parasites, causing more severe conditions in certain people like Burkitt Lymphoma. This review will be informative about the mechanism of how EBV interacts with malaria parasites and how it affects the immune system. Knowledge of various cytokines triggering the immune system which may provide links to control/minimize malaria disease severity

    Risk of classical Kaposi sarcoma by plasma levels of Epstein-Barr virus antibodies, sCD26, sCD23 and sCD30

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To clarify the immunological alterations leading to classical Kaposi sarcoma (cKS) among people infected with KS-associated herpesvirus (KSHV).</p> <p>Methods</p> <p>In a population-based study of 119 cKS cases, 105 KSHV-seropositive controls, and 155 KSHV-seronegative controls, we quantified plasma soluble cluster of differentiation (sCD) levels and antibodies against Epstein-Barr virus nuclear antigen-1 (anti-EBNA-1) and viral capsid antigen (anti-VCA). Differences between groups in prevalence of low-tertile anti-EBNA-1 and high-tertile anti-VCA were compared by logistic regression. Continuous levels between groups and by presence of cKS co-factors among controls were compared by linear regression and Mann-Whitney-Wilcoxon methods.</p> <p>Results</p> <p>Comparisons of cKS cases to seropositive controls and of seropositive to seronegative controls revealed no significant differences. However, controls with known cKS cofactors (male sex, nonsmoking, diabetes and cortisone use) had significantly lower levels of anti-EBNA (<it>P </it>= 0.0001 - 0.07) and anti-VCA (<it>P </it>= 0.0001 - 0.03). Levels of sCD26 were significantly lower for male and non-smoking controls (<it>P</it><sub>adj </sub>≤ 0.03), and they were marginally lower with older age and cortisone use (<it>P</it><sub>adj </sub>≤ 0.09).</p> <p>Conclusions</p> <p>Anti-EBV and sCD26 levels were associated with cofactors for cKS, but they did not differ between cKS cases and matched controls. Novel approaches and broader panels of assays are needed to investigate immunological contributions to cKS.</p

    Epigenetic markers for early detection of nasopharyngeal carcinoma in a high risk population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Undifferentiated nasopharyngeal carcinoma (NPC) is strongly related to Epstein-Barr virus (EBV) infection, allowing aberrant antibodies against EBV and viral DNA load as screening tools in high risk populations. Methylation analysis in the promoter of tumor suppressor genes (TSGs) may serve as a complementary marker for identifying early cases. This study determined methylation status of multiple TSGs and evaluated whether it may improve early detection.</p> <p>Methods</p> <p>Nasopharyngeal brushings were taken from 53 NPC patients, 22 high risk subjects and 25 healthy EBV carriers. Corresponding NPC paraffin tissue was included. DNA was bisulfite-modified preceding analysis by methylation-specific PCR (MSP). Ten TSGs were studied.</p> <p>Results</p> <p>NPC paraffin and brushing DNA revealed an 81.8% concordance so that MSP analysis was done using either one of both specimens. NPC samples showed methylation for individual TSGs (DAPK1 79.2%, CDH13 77.4%, DLC1 76.9%, RASSF1A 75.5%, CADM1 69.8%, p16 66.0%, WIF1 61.2%, CHFR 58.5%, RIZ1 56.6% and RASSF2A 29.2%). High risk individuals, having elevated EBV IgA and viral load, showed high frequency of methylation of CDH13, DAPK1, DLC1 and CADM1, but low frequency of methylation of p16 and WIF1 and undetectable methylation of RASSF1A, CHFR, RIZ1 and RASSF2A. Healthy subjects showed similar patterns as high risk individuals. A combination of RASSF1A and p16 gave good discrimination between NPC and non-NPC, but best results were combined analysis of five methylation markers (RASSF1A, p16, WIF1, CHFR and RIZ1) with detection rate of 98%.</p> <p>Conclusion</p> <p>Multiple marker MSP is proposed as a complementary test for NPC risk assessment in combination with EBV-based markers.</p

    Elevated anti-Zta IgG levels and EBV viral load are associated with site of tumor presentation in endemic Burkitt's lymphoma patients: a case control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Endemic Burkitt's lymphoma (BL) is an extranodal tumor appearing predominantly in the jaw in younger children while abdominal tumors predominate with increasing age. Previous studies have identified elevated levels of antibodies to <it>Plasmodium falciparum </it>schizont extracts and Epstein-Barr virus (EBV) viral capsid antigens (VCA) in endemic BL relative to malaria exposed controls. However, these studies have neither determined if there were any differences based on the site of clinical presentation of the tumor nor examined a broader panel of EBV and <it>P. falciparum </it>antigens.</p> <p>Methods</p> <p>We used a suspension bead Luminex assay to measure the IgG levels against EBV antigens, VCA, EAd, EBNA-1 and Zta as well as <it>P. falciparum </it>MSP-1, LSA-1, and AMA-1 antigens in children with BL (n = 32) and in population-based age-and sex-matched controls (n = 25) from a malaria endemic region in Western Kenya with high incidence of BL. EBV viral load in plasma was determined by quantitative PCR.</p> <p>Results</p> <p>Relative to healthy controls, BL patients had significantly increased anti-Zta (<it>p </it>= 0.0017) and VCA IgG levels (<it>p </it>< 0.0001) and plasma EBV viral loads (<it>p </it>< 0.0001). In contrast, comparable IgG levels to all <it>P. falciparum </it>antigens tested were observed in BL patients compared to controls. Interestingly, when we grouped BL patients into those presenting with abdominal tumors or with jaw tumors, we observed significantly higher levels of anti-Zta IgG levels (<it>p </it>< 0.0065) and plasma EBV viral loads (<it>p </it>< 0.033) in patients with abdominal tumors compared to patients with jaw tumors.</p> <p>Conclusion</p> <p>Elevated antibodies to Zta and elevated plasma EBV viral load could be relevant biomarkers for BL and could also be used to confirm BL presenting in the abdominal region.</p

    Epstein-Barr Virus-Encoded BARF1 Protein is a Decoy Receptor for Macrophage Colony Stimulating Factor and Interferes with Macrophage Differentiation and Activation

    Get PDF
    Epstein-Barr virus (EBV), like many other persistent herpes viruses, has acquired numerous mechanisms for subverting or evading immune surveillance. This study investigates the role of secreted EBV-encoded BARF1 protein (sBARF1) in creating an immune evasive microenvironment. Wild-type consensus BARF1 was expressed in the human 293 cell line and purified. This native hexameric sBARF1 had inhibitory capacity on macrophage colony stimulating factor (M-CSF)-stimulated, and not on granulocyte macrophage-colony stimulating factor (GM-CSF)-stimulated growth and differentiation of myeloid cells. Antibodies specific to hexameric sBARF1 were able to block this effect. M-CSF was shown to interact with sBARF1 via the protruding N-terminal loops involving Val38 and Ala84. Each BARF1 hexamer was capable of binding three M-CSF dimers. Mutations in the BARF1 loops greatly affected M-CSF interaction, and showed loss of growth inhibition. Analysis of the activation state of the M-CSF receptor c-fms and its downstream kinase pathways showed that sBARF1 prevented M-CSF-induced downstream phosphorylation. Since M-CSF is an important factor in macrophage differentiation, the effect of sBARF1 on the function of monocyte-derived macrophages was evaluated. sBARF1 affected overall survival and morphology and significantly reduced expression of macrophage differentiation surface markers such as CD14, CD11b, CD16, and CD169. Macrophages differentiating in the presence of sBARF1 showed impaired responses to lipopolysaccharide and decreased oxygen radical formation as well as reduced phagocytosis of apoptotic cells. In conclusion, EBV sBARF1 protein is a potent decoy receptor for M-CSF, hampering the function and differentiation of macrophages. These results suggest that sBARF1 contributes to the modulation of immune responses in the microenvironment of EBV-positive carcinoma

    Stage-Specific Inhibition of MHC Class I Presentation by the Epstein-Barr Virus BNLF2a Protein during Virus Lytic Cycle

    Get PDF
    gamma-herpesvirus Epstein-Barr virus (EBV) persists for life in infected individuals despite the presence of a strong immune response. During the lytic cycle of EBV many viral proteins are expressed, potentially allowing virally infected cells to be recognized and eliminated by CD8+ T cells. We have recently identified an immune evasion protein encoded by EBV, BNLF2a, which is expressed in early phase lytic replication and inhibits peptide- and ATP-binding functions of the transporter associated with antigen processing. Ectopic expression of BNLF2a causes decreased surface MHC class I expression and inhibits the presentation of indicator antigens to CD8+ T cells. Here we sought to examine the influence of BNLF2a when expressed naturally during EBV lytic replication. We generated a BNLF2a-deleted recombinant EBV (ΔBNLF2a) and compared the ability of ΔBNLF2a and wild-type EBV-transformed B cell lines to be recognized by CD8+ T cell clones specific for EBV-encoded immediate early, early and late lytic antigens. Epitopes derived from immediate early and early expressed proteins were better recognized when presented by ΔBNLF2a transformed cells compared to wild-type virus transformants. However, recognition of late antigens by CD8+ T cells remained equally poor when presented by both wild-type and ΔBNLF2a cell targets. Analysis of BNLF2a and target protein expression kinetics showed that although BNLF2a is expressed during early phase replication, it is expressed at a time when there is an upregulation of immediate early proteins and initiation of early protein synthesis. Interestingly, BNLF2a protein expression was found to be lost by late lytic cycle yet ΔBNLF2a-transformed cells in late stage replication downregulated surface MHC class I to a similar extent as wild-type EBV-transformed cells. These data show that BNLF2a-mediated expression is stage-specific, affecting presentation of immediate early and early proteins, and that other evasion mechanisms operate later in the lytic cycle

    Multilaboratory assessment of Epstein-Barr virus serologic assays: the case for standardization

    Get PDF
    IgA antibodies targeting Epstein-Barr virus (EBV) have been proposed for screening for nasopharyngeal carcinoma (NPC). However, methods differ, and the antigens used in these assays differ considerably between laboratories. To enable formal comparisons across a range of established EBV serology assays, we created a panel of 66 pooled serum samples and 66 pooled plasma samples generated from individuals with a broad range of IgA antibody levels. Aliquots from these panels were distributed to six laboratories and were tested by 26 assays measuring antibodies against VCA, EBNA1, EA-EBNA1, Zta, or EAd antigens. We estimated the correlation between assay pairs using Spearman coefficients (continuous measures) and percentages of agreement (positive versus negative, using predefined positivity cutoffs by each assay developer/manufacturer). While strong correlations were observed between some assays, considerable differences were also noted, even for assays that targeted the same protein. For VCA-IgA assays in serum, two distinct clusters were identified, with a median Spearman coefficient of 0.41 (range, 0.20 to 0.66) across these two clusters. EBNA1-IgA assays in serum grouped into a single cluster with a median Spearman coefficient of 0.79 (range, 0.71 to 0.89). Percentages of agreement differed broadly for both VCA-IgA (12% to 98%) and EBNA1-IgA (29% to 95%) assays in serum. Moderate-to-strong correlations were observed across assays in serum that targeted other proteins (correlations ranged from 0.44 to 0.76). Similar results were noted for plasma. We conclude that standardization of EBV serology assays is needed to allow for comparability of results obtained in different translational research studies across laboratories and populations

    Aberrant Epstein-Barr virus antibody patterns and chronic lymphocytic leukemia in a Spanish multicentric case-control study

    Get PDF
    Background: Epstein-Barr virus (EBV)-related malignancies harbour distinct serological responses to EBV antigens. We hypothesized that EBV serological patterns can be useful to identify different stages of chronic lymphocytic leukemia. Methods: Information on 150 cases with chronic lymphocytic leukemia and 157 frequency-matched (by age, sex and region) population-based controls from a Spanish multicentre case-control study was obtained. EBV immunoglobulin G serostatus was evaluated through a peptide-based ELISA and further by immunoblot analysis to EBV early antigens (EA), nuclear antigen (EBNA1), VCA-p18, VCA-p40 and Zebra. Two independent individuals categorized the serological patterns of the western blot analysis. Patients with very high response and diversity in EBV-specific polypeptides, in particular with clear responses to EA-associated proteins, were categorized as having an abnormal reactive pattern (ab_EBV). Adjusted odds ratios (OR) and 95% confidence interval (CI) were estimated using logistic regression models. Results: Almost all subjects were EBV-IgG positive (>95% of cases and controls) whereas ab_EBV patterns were detected in 23% of cases (N = 34) and 11% of controls (N = 17; OR: 2.44, 95% CI, 1.29 to 4.62; P = 0.006), particularly in intermediate/high risk patients. Although based on small numbers, the association was modified by smoking with a gradual reduction of ab_EBV-related OR for all Rai stages from never smokers to current smokers. Conclusions: Highly distinct EBV antibody diversity patterns revealed by immunoblot analysis were detected in cases compared to controls, detectable at very early stages of the disease and particularly among non smokers. This study provides further evidence of an abnormal immunological response against EBV in patients with chronic lymphocytic leukemia
    corecore