5 research outputs found

    Crystal Structure and Functional Analysis of the SARS-Coronavirus RNA Cap 2′-O-Methyltransferase nsp10/nsp16 Complex

    Get PDF
    Cellular and viral S-adenosylmethionine-dependent methyltransferases are involved in many regulated processes such as metabolism, detoxification, signal transduction, chromatin remodeling, nucleic acid processing, and mRNA capping. The Severe Acute Respiratory Syndrome coronavirus nsp16 protein is a S-adenosylmethionine-dependent (nucleoside-2′-O)-methyltransferase only active in the presence of its activating partner nsp10. We report the nsp10/nsp16 complex structure at 2.0 Å resolution, which shows nsp10 bound to nsp16 through a ∼930 Å2 surface area in nsp10. Functional assays identify key residues involved in nsp10/nsp16 association, and in RNA binding or catalysis, the latter likely through a SN2-like mechanism. We present two other crystal structures, the inhibitor Sinefungin bound in the S-adenosylmethionine binding pocket and the tighter complex nsp10(Y96F)/nsp16, providing the first structural insight into the regulation of RNA capping enzymes in (+)RNA viruses

    The role of savannas in the terrestrial Si cycle: A case-study from Lamto, Ivory Coast

    No full text
    International audienceSavannas currently occupy a fifth of the earth's land surface and are predicted to expand in the next few centuries at the expense of tropical forests, mainly as a result of deforestation and human fires. Can such a vegetation trend impact, through changes in plant Si cycling, the lithogenic silicon (LSi) release into soils (through chemical weathering) and the net dissolved Si (DSi) outputs from soils to stream water (through chemical denudation)? The first step of an investigation requires quantifying the net Si fluxes involved in the plant/soil system. Here, a schematic steady-state Si cycle, established for a tropical humid savanna (Lamto, Ivory Coast) that developed on a ferruginous soil and is subjected to annual fires, is presented. Erosion was assumed to be insignificant. LSi and biogenic Si (BSi under the form of phytoliths) pools were measured, and Si fluxes were estimated from Si concentrations and mass balance calculation. Identification of plant and soil phytoliths indicated that the soil BSi pool is in equilibrium with the current BSi input by the savanna. In the soil column, mixing between a young rapidly recycled BSi pool and an old stable BSi pool is attested by a mixing line equation. Storage of the old BSi pool is assimilated as a BSi output from the plant/soil system. A BSi output additionally occurs after annual fires, when ashes are exported. Both BSi outputs decrease as much the BSi dissolution. In order to uptake constant DSi flux, the savanna increases by three to eight times the net LSi release, depending upon the post-fire ash exportation scenario. A comparison between savanna and rainforest Si cycles that maximizes the differences in plant/soil systems and minimizes differences in climate is presented. The comparison revealed that BSi storage is higher in the savanna soil than in the rainforest soil, mainly due to BSi production that is twice higher in the savanna (127 vs 67 kg/ha/yr). The resulting LSi release that is enhanced by plant uptake is more than 1.5 higher in the savanna than in the rainforest (from 33 to 85 kg/ha/yr in the savanna vs 21 kg/ha/yr in the rainforest). On the contrary, DSi output from soils to stream water, which is not controlled by plant Si cycling but more likely by the soil hydrological regime (or meteoric weathering), is close to twice as high in the rainforest/ferrallitic soil ecosystem (16 vs 9 kg/ha/yr). This case study suggests that the predicted expansion of savannas at the expense of forests should significantly increase DSi uptake by plants, BSi storage in soils, BSi output with ash exportation, and, hence, LSi release through chemical weathering, without direct impact on DSi outputs from soils to stream water. Tracks for further assessing the role of plant Si cycling on chemical weathering, Si and C cycles were suggested: 1) estimates of BSi fluxes that were wrongly based on the assumption that the amount of DSi leached out from soils is linked to the magnitude of plant Si cycling and/or to BSi concentration in soils should be reappraised and 2) changes in the magnitude of plant Si cycling should be accounted in geochemical carbon cycle models, for one of the plant-induced weathering mechanisms

    Conducting Polymers for Ammonia Sensing: Electrodeposition, Hybrid Materials and Heterojunctions

    No full text
    International audiencePolyaniline (PANI) with electrodonating and electrowithdrawing substituents were electrodeposited and studied as sensing materials in resistors and heterojunctions. Whereas the dimethoxyaniline leads to a highly conductive material, the tetrafluoroaniline leads to a poor conducting polymer. However, this latter was used in heterojunctions, associated with a highly conductive material, the lutetium bisphthalocyanine LuPc2. Elsewhere, hybrid materials combining polypyrrole (PPy) with ionic macrocycles as counterions were also electrosynthesized and used as sensing material in resistors, for the detection of ammonia. They exhibit a higher sensitivity compared to PPy prepared with small counterions, with a stable response in a broad range of relative humidity

    Light-Dependent Regulation of Cell Division in Ostreococcus: Evidence for a Major Transcriptional Input1[W]

    No full text
    Cell division often occurs at specific times of the day in animal and photosynthetic organisms. Studies in unicellular photosynthetic algae, such as Chlamydomonas or Euglena, have shown that the photoperiodic control of cell division is mediated through the circadian clock. However, the underlying mechanisms remain unknown. We have studied the molecular basis of light-dependent control of cell division in the unicellular green alga Ostreococcus. We found that cell division obeys a circadian oscillator in Ostreococcus. We provide evidence suggesting that the clock may, at least in part, regulate directly cell division independently of the metabolism. Combined microarray and quantitative real-time reverse transcription-polymerase chain reaction analysis of the main core cell cycle gene expression revealed an extensive transcriptional regulation of cell division by the photoperiod in Ostreococcus. Finally, transcription of the main core cell cycle genes, including cyclins and cyclin-dependent kinases, was shown to be under circadian control in Ostreococcus, suggesting that these genes are potential targets of the circadian clock in the control of cell division
    corecore