262 research outputs found
Matter from light-light scattering via Breit-Wheeler events produced by two interacting Compton sources
We present the dimensioning of a photon-photon collider based on Compton gamma sources for the observation of Breit-Wheeler pair production and QED \u3b3\u3b3 events. Two symmetric electron beams, generated by photocathodes and accelerated in linacs, produce two gamma ray beams through Compton back scattering with two J-class lasers. Tuning the system energy above the Breit-Wheeler cross section threshold, a flux of electron-positron pairs is generated out of light-light interaction. The process is analyzed by start-to-end simulations. Realistic numbers of the secondary particle yield, referring to existing state-of-the-art set-ups and a discussion of the feasibility of the experiment taking into account the background signal are presented
Normal ultrasonographic features of loggerhead (Caretta caretta) eyes
The Loggerhead sea turtle (Caretta caretta) is widely distributed in the Mediterranean Sea but, like other sea turtles, it is considered a threatened species. Improving anatomical knowledge on normal aspects of the species is important for correct diagnosis and proper therapy and, therefore, for improving the chances of a complete recovery and a fast reintroduction into the wild for a greater number of sea turtle bycatch and other mishaps. For this reason, 15 Loggerhead turtles, with clinically healthy eyes, were submitted to ocular ultrasonographic (US) examinations. The US exam was quick, non-invasive, and simple to perform and permitted researchers to assess all the ocular features. © 2020, Croatian Natural History Museum. All rights reserved
Muscomorpha: Acalyptrata, Familia Chloropidae Calyptrata, Superfamilias Muscoidea e Hippoboscoidea
Dentro del Orden Diptera, Suborden Brachycera (moscas con antenas cortas), se ubica el clado Cyclorrhapha o Muscomorpha, un grupo de enorme diversidad y con muchas especies de importancia sanitaria. Se caracterizan, entre otras particularidades, porque al emerger, los adultos salen del pupario por el extremo anterior a través de una abertura circular que rompen con el ptilinum, una bolsa que se despliega por la presión hidrostática de la hemolinfa para abrir la cutícula que forma el pupario y para atravesar las capas del sustrato donde se desarrollaron los estados preimaginales. Los Cyclorrhapha, a su vez comprenden el Infraorden Aschiza (sin sutura ptilinal) y el Infraorden Schizophora (con sutura ptilinal). Las especies de Aschiza no revisten gran importancia médica o veterinaria y son excluidos de este libro. Los Schizophora, por su parte, se dividen en Acalyptrata y Calyptrata, según la ausencia o presencia, respectivamente, de la caliptra, un lóbulo grande adicional a las alas y que cubre el halterio y cuyas especies también presentan un surco antenal.
La clasificación mencionada no está completamente consensuada entre los especialistas en dípteros, y es frecuente encontrar conflictos en cuanto al rango que adjudican los autores a las diferentes categorías, en especial en las últimas décadas, en las que se ha avanzado significativamente en el conocimiento de la filogenia por los aportes de la biología molecular.
Este capítulo se refiere a los ciclorrafos de importancia médica y veterinaria, y abarca las moscas “de los ojos” (familia Chloropidae), las moscas con hábitos sinantrópicos (familias Muscidae y Fanniidae), las moscas hematófagas (subfamilia Stomoxyinae de la familia Muscidae y familia Glossinidae) y un grupo relativamente pequeño de otras familias de ectoparásitos de mamíferos (familias Hippoboscidae, Nycteribiidae y Streblidae).Facultad de Ciencias Naturales y Muse
Vector Competence of Argentine Mosquitoes (Diptera: Culicidae) for West Nile virus (Flaviviridae: Flavivirus)
We examined the ability of Culex pipiens L. complex mosquitoes from Argentina to vector West Nile virus (WNV) to assess their role in the transmission of WNV in South America. Several egg rafts of Culex spp. were collected from different breeding sites in the suburbs of the city of La Plata, Argentina, and a subset of each progeny was scored with morphological and genetic species indicators. Surprisingly, we did not find Cx. pipiens form pipiens, but found evidence of genetic hybrids of Culex quinquefasciatus and Cx. pipiens f. molestus. We then used morphological traits to create two colonies predominantly composed of one of these two taxa, although some hybrids are likely to have been included in both. These colonies were used in vector competence studies using NY99 and WN02 genotype strains of WNV obtained in New York State. As controls, we also tested colonies of U.S. Cx. quinquefasciatus and Cx. pipiens f. molestus. Additional Culex larvae from three drainage ditches near the cities of La Plata and Berisso, Argentina, were identified by morphological and high-resolution molecular markers (microsatellites) as Cx.
quinquefasciatus Say, Cx. pipiens form molestus, and hybrids. Results indicate that Argentinian Culex are competent but only moderately efficient vectors of WNV and are less susceptible to this virus than comparable U.S. mosquito strains. Studies of vertical transmission of NY99 virus by Cx. pipiens f. molestus hybrids from Argentina yielded a minimal filial infection rate of 1.19 from females feeding during their second and later bloodmeals.Centro de Estudios Parasitológicos y de Vectore
Factors Related to Aedes aegypti (Diptera: Culicidae) Populations and Temperature Determine Differences on Life-History Traits With Regional Implications in Disease Transmission
Aedes aegypti (L.) (Diptera: Culicidae) is a vector of many medically significant viruses in the Americas, including dengue virus, chikungunya virus, and Zika virus. Traits such as longevity, fecundity, and feeding behavior contribute to the ability of Ae. aegypti to serve as a vector of these pathogens. Both local environmental factors and population genetics could contribute to variability in these traits. We performed a comparative study of Ae. aegypti populations from four geographically and environmentally distinct collection sites in Argentina in which the cohorts from each population were held at temperature values simulating a daily cycle, with an average of 25°C in order to identify the influence of population on life-history traits. In addition, we performed the study of the same populations held at a daily temperature cycle similar to that of the surveyed areas. According to the results, Aguaray is the most outstanding population, showing features that are important to achieve high fitness. Whereas La Plata gathers features consistent with low fitness. Iguazu was outstanding in blood-feeding rate while Posadas's population showed intermediate values. Our results also demonstrate that climate change could differentially affect unique populations, and that these differences have implications for the capacity for Ae. aegypti to act as vectors for medically important arboviruses.Fil: Muttis, Evangelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Estudios Parasitológicos y de Vectores. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Estudios Parasitológicos y de Vectores; ArgentinaFil: Balsalobre, Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Estudios Parasitológicos y de Vectores. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Estudios Parasitológicos y de Vectores; ArgentinaFil: Chuchuy, Ailen. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Estudios Parasitológicos y de Vectores. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Estudios Parasitológicos y de Vectores; ArgentinaFil: Mangudo, Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energía no Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energía no Convencional; ArgentinaFil: Ciota, Alexander. Wadsworth Center, New York State Department Of Health; Estados UnidosFil: Micieli, Maria Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Estudios Parasitológicos y de Vectores. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Estudios Parasitológicos y de Vectores; Argentin
Differential Effects of Temperature and Mosquito Genetics Determine Transmissibility of Arboviruses by <i>Aedes aegypti</i> in Argentina
Aedes aegypti (L.) (Diptera: Culicidae) have a global distribution and are the primary vector of a number of mosquito-borne viruses responsible for epidemics throughout the Americas. As in much of South America, the threat from pathogens including dengue virus (DENV; Flaviviridae, Flavivirus) and chikungunya virus (CHIKV; Togaviridae, Alphavirus) has increased in Argentina in recent years. The complexity of transmission cycles makes predicting the occurrence and intensity of arbovirus outbreaks difficult. To gain a better understanding of the risk of DENV and CHIKV in Argentina and the factors influencing this risk, we evaluated the role of population and temperature in the vector competence and vectorial capacity (VC) of Ae. aegypti from geographically and ecologically distinct locations. Our results demonstrate that intrinsic and extrinsic factors including mosquito population, viral species, and temperature significantly influence both vector competence and overall VC of Ae. aegypti in Argentina, yet also that the magnitude of these influences is highly variable. Specifically, results suggest that CHIKV competence is more dependent on mosquito genetics than is DENV competence, whereas temperature has a greater effect on DENV transmission. In addition, although there is an overall positive correlation between temperature and competence for both viruses, there are exceptions to this for individual virus?population combinations. Together, these data establish large variability in VC for these pathogens among distinct Ae. aegypti populations in Argentina and demonstrate that accurate assessment of arbovirus risk will require nuanced models that fully consider the complexity of interactions between virus, temperature, mosquito genetics, and hosts.Centro de Estudios Parasitológicos y de Vectore
Differential Effects of Temperature and Mosquito Genetics Determine Transmissibility of Arboviruses by <i>Aedes aegypti</i> in Argentina
Aedes aegypti (L.) (Diptera: Culicidae) have a global distribution and are the primary vector of a number of mosquito-borne viruses responsible for epidemics throughout the Americas. As in much of South America, the threat from pathogens including dengue virus (DENV; Flaviviridae, Flavivirus) and chikungunya virus (CHIKV; Togaviridae, Alphavirus) has increased in Argentina in recent years. The complexity of transmission cycles makes predicting the occurrence and intensity of arbovirus outbreaks difficult. To gain a better understanding of the risk of DENV and CHIKV in Argentina and the factors influencing this risk, we evaluated the role of population and temperature in the vector competence and vectorial capacity (VC) of Ae. aegypti from geographically and ecologically distinct locations. Our results demonstrate that intrinsic and extrinsic factors including mosquito population, viral species, and temperature significantly influence both vector competence and overall VC of Ae. aegypti in Argentina, yet also that the magnitude of these influences is highly variable. Specifically, results suggest that CHIKV competence is more dependent on mosquito genetics than is DENV competence, whereas temperature has a greater effect on DENV transmission. In addition, although there is an overall positive correlation between temperature and competence for both viruses, there are exceptions to this for individual virus?population combinations. Together, these data establish large variability in VC for these pathogens among distinct Ae. aegypti populations in Argentina and demonstrate that accurate assessment of arbovirus risk will require nuanced models that fully consider the complexity of interactions between virus, temperature, mosquito genetics, and hosts.Centro de Estudios Parasitológicos y de Vectore
Biological characterization of Aedes albopictus (Diptera: Culicidae) in Argentina: Implications for arbovirus transmission
Aedes albopictus (Diptera: Culicidae) is an invasive mosquito, native to Asia, that has expanded its range worldwide. It is considered to be a public health threat as it is a competent vector of viruses of medical importance, including dengue, chikungunya, and Zika. Despite its medical importance there is almost no information on biologically important traits of Ae. albopictus in Argentina. We studied life cycle traits, demographic parameters and analyzed the competence of this mosquito as a virus vector. In addition, we determined the prevalence of Wolbachia strains in Ae. albopictus as a first approach to investigate the potential role of this bacteria in modulating vector competence for arboviruses. We observed low hatch rates of eggs, which led to a negative growth rate. We found that Ae. albopictus individuals were infected with Wolbachia in the F1 but while standard superinfection with wAlbA and wAlbB types was found in 66.7% of the females, 16.7% of the females and 62.5% of the males were single-infected with the wAlbB strain. Finally, despite high levels of infection and dissemination, particularly for chikungunya virus, Ae. albopictus from subtropical Argentina were found to be relatively inefficient vectors for transmission of both chikungunya and dengue viruses.Centro de Estudios Parasitológicos y de Vectore
- …