32 research outputs found

    Depression prevalence using the HADS-D compared to SCID major depression classification:An individual participant data meta-analysis

    Get PDF
    Objectives: Validated diagnostic interviews are required to classify depression status and estimate prevalence of disorder, but screening tools are often used instead. We used individual participant data meta-analysis to compare prevalence based on standard Hospital Anxiety and Depression Scale – depression subscale (HADS-D) cutoffs of ≥8 and ≥11 versus Structured Clinical Interview for DSM (SCID) major depression and determined if an alternative HADS-D cutoff could more accurately estimate prevalence. Methods: We searched Medline, Medline In-Process & Other Non-Indexed Citations via Ovid, PsycINFO, and Web of Science (inception-July 11, 2016) for studies comparing HADS-D scores to SCID major depression status. Pooled prevalence and pooled differences in prevalence for HADS-D cutoffs versus SCID major depression were estimated. Results: 6005 participants (689 SCID major depression cases) from 41 primary studies were included. Pooled prevalence was 24.5% (95% Confidence Interval (CI): 20.5%, 29.0%) for HADS-D ≥8, 10.7% (95% CI: 8.3%, 13.8%) for HADS-D ≥11, and 11.6% (95% CI: 9.2%, 14.6%) for SCID major depression. HADS-D ≥11 was closest to SCID major depression prevalence, but the 95% prediction interval for the difference that could be expected for HADS-D ≥11 versus SCID in a new study was −21.1% to 19.5%. Conclusions: HADS-D ≥8 substantially overestimates depression prevalence. Of all possible cutoff thresholds, HADS-D ≥11 was closest to the SCID, but there was substantial heterogeneity in the difference between HADS-D ≥11 and SCID-based estimates. HADS-D should not be used as a substitute for a validated diagnostic interview.This study was funded by the Canadian Institutes of Health Research (CIHR, KRS-144045 & PCG 155468). Ms. Neupane was supported by a G.R. Caverhill Fellowship from the Faculty of Medicine, McGill University. Drs. Levis and Wu were supported by Fonds de recherche du Québec - Santé (FRQS) Postdoctoral Training Fellowships. Mr. Bhandari was supported by a studentship from the Research Institute of the McGill University Health Centre. Ms. Rice was supported by a Vanier Canada Graduate Scholarship. Dr. Patten was supported by a Senior Health Scholar award from Alberta Innovates, Health Solutions. The primary study by Scott et al. was supported by the Cumming School of Medicine and Alberta Health Services through the Calgary Health Trust, and funding from the Hotchkiss Brain Institute. The primary study by Amoozegar et al. was supported by the Alberta Health Services, the University of Calgary Faculty of Medicine, and the Hotchkiss Brain Institute. The primary study by Cheung et al. was supported by the Waikato Clinical School, University of Auckland, the Waikato Medical Research Foundation and the Waikato Respiratory Research Fund. The primary study by Cukor et al. was supported in part by a Promoting Psychological Research and Training on Health-Disparities Issues at Ethnic Minority Serving Institutions Grants (ProDIGs) awarded to Dr. Cukor from the American Psychological Association. The primary study by De Souza et al. was supported by Birmingham and Solihull Mental Health Foundation Trust. The primary study by Honarmand et al. was supported by a grant from the Multiple Sclerosis Society of Canada. The primary study by Fischer et al. was supported as part of the RECODEHF study by the German Federal Ministry of Education and Research (01GY1150). The primary study by Gagnon et al. was supported by the Drummond Foundation and the Department of Psychiatry, University Health Network. The primary study by Akechi et al. was supported in part by a Grant-in-Aid for Cancer Research (11−2) from the Japanese Ministry of Health, Labour and Welfare and a Grant-in-Aid for Young Scientists (B) from the Japanese Ministry of Education, Culture, Sports, Science and Technology. The primary study by Kugaya et al. was supported in part by a Grant-in-Aid for Cancer Research (9–31) and the Second-Term Comprehensive 10-year Strategy for Cancer Control from the Japanese Ministry of Health, Labour and Welfare. The primary study Ryan et al. was supported by the Irish Cancer Society (Grant CRP08GAL). The primary study by Keller et al. was supported by the Medical Faculty of the University of Heidelberg (grant no. 175/2000). The primary study by Love et al. (2004) was supported by the Kathleen Cuningham Foundation (National Breast Cancer Foundation), the Cancer Council of Victoria and the National Health and Medical Research Council. The primary study by Love et al. (2002) was supported by a grant from the Bethlehem Griffiths Research Foundation. The primary study by Löwe et al. was supported by the medical faculty of the University of Heidelberg, Germany (Project 121/2000). The primary study by Navines et al. was supported in part by the Spanish grants from the Fondo de Investigación en Salud, Instituto de Salud Carlos III (EO PI08/90869 and PSIGEN-VHC Study: FIS-E08/00268) and the support of FEDER (one way to make Europe). The primary study by O'Rourke et al. was supported by the Scottish Home and Health Department, Stroke Association, and Medical Research Council. The primary study by Sanchez-Gistau et al. was supported by a grant from the Ministry of Health of Spain (PI040418) and in part by Catalonia Government, DURSI 2009SGR1119. The primary study by Gould et al. was supported by the Transport Accident Commission Grant. The primary study by Rooney et al. was supported by the NHS Lothian Neuro-Oncology Endowment Fund. The primary study by Schwarzbold et al. was supported by PRONEX Program (NENASC Project) and PPSUS Program of Fundaçao de Amparo a esquisa e Inovacao do Estado de Santa Catarina (FAPESC) and the National Science and Technology Institute for Translational Medicine (INCT-TM). The primary study by Simard et al. was supported by IDEA grants from the Canadian Prostate Cancer Research Initiative and the Canadian Breast Cancer Research Alliance, as well as a studentship from the Canadian Institutes of Health Research. The primary study by Singer et al. (2009) was supported by a grant from the German Federal Ministry for Education and Research (no. 01ZZ0106). The primary study by Singer et al. (2008) was supported by grants from the German Federal Ministry for Education and Research (# 7DZAIQTX) and of the University of Leipzig (# formel. 1–57). The primary study by Meyer et al. was supported by the Federal Ministry of Education and Research (BMBF). The primary study by Stone et al. was supported by the Medical Research Council, UK and Chest Heart and Stroke, Scotland. The primary study by Turner et al. was supported by a bequest from Jennie Thomas through Hunter Medical Research Institute. The primary study by Walterfang et al. was supported by Melbourne Health. Drs. Benedetti and Thombs were supported by FRQS researcher salary awards. No other authors reported funding for primary studies or for their work on this study. No funder had any role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication

    Staging of Schizophrenia with the Use of PANSS: An International Multi-Center Study

    Get PDF
    Introduction: A specific clinically relevant staging model for schizophrenia has not yet been developed. The aim of the current study was to evaluate the factor structure of the PANSS and develop such a staging method.Methods: Twenty-nine centers from 25 countries contributed 2358 patients aged 37.21 ± 11.87 years with schizophrenia. Analysis of covariance, Exploratory Factor Analysis, Discriminant Function Analysis, and inspection of resultant plots were performed.Results: Exploratory Factor Analysis returned 5 factors explaining 59% of the variance (positive, negative, excitement/hostility, depression/anxiety, and neurocognition). The staging model included 4 main stages with substages that were predominantly characterized by a single domain of symptoms (stage 1: positive; stages 2a and 2b: excitement/hostility; stage 3a and 3b: depression/anxiety; stage 4a and 4b: neurocognition). There were no differences between sexes. The Discriminant Function Analysis developed an algorithm that correctly classified >85% of patients.Discussion: This study elaborates a 5-factor solution and a clinical staging method for patients with schizophrenia. It is the largest study to address these issues among patients who are more likely to remain affiliated with mental health services for prolonged periods of time.<br /

    Arsenic in forests – a short review

    No full text
    The inputs of As in forest ecosystems have declined since the eighties when the higher concentrations of that metalloid were observed due to industrial activities. The As inputs to the forest floor include throughfall and litterfall where dry deposition is an appreciable percentage. This is manifested by the higher As concentration in older needles of conifers and the enrichment of throughfall relative to the bulk deposition. The throughfall and the forest floor convert the inorganic As into methylated organic As and in this way reduce its toxicity. In unpolluted forests the vast percentage of As is retained in soils because the oxides of Fe and Al are very efficient holders. In polluted forested soils the As can become mobile and enrich the surface runoff waters approaching even the threshold value set by the World Health Organization. For this reason forest soils with high concentration of As due to former high loads should be monitored

    Temporal Variations in Temperature and Moisture Soil Profiles in a Mediterranean Maquis Forest in Greece

    No full text
    Soil moisture (SM) and temperature (ST) are critical factors in forest eco-hydrological research. In this study, we investigated the inter- and intra-annual changes in SM and ST profiles in a mixed Mediterranean maquis forest stand together with soil and meteorological parameters. Hourly data from three field measurements points at four depths (−5, −20, −40 and −70 cm) for 6 years were interpolated using the kriging method to produce annual SM and ST profiles. The results indicate that air temperature highly affects the upper 5 cm of the mineral soil. In general, it increases with depth in winter at an average rate of 0.036 °C/cm and decreases in summer (0.035 °C/cm), presenting higher values compared to air temperature from April to August and lower ones during the rest of the period. Precipitation is the main factor driving SM variations up to a superficial soil depth of 40 cm. The upper soil layer (0–40 cm) infiltrates water faster and presents high SM variability, especially in monthly and seasonal (year to year) time steps. The maquis forest stands are likely to be strongly affected by climate change, therefore the results of this study could be useful in hydrological and climate change studies focused on maquis vegetation water management

    The influence of forest types on manganese content in soils

    No full text
    The concentrations of available and total Mn were determined in the soils of three different forest ecosystems, i.e. a maquis forest, a beech forest and fir one. The concentrations of total Mn in the deeper mineral horizons reflected the type of patent material, but in the surface layers, the more acidic soil (in the beech forest) had the higher concentrations. This was due to the high concentrations of Mn in the standing leaves and litterfall of beech trees, which brought about high litterfall fluxes of Mn in that forest. However, the concentrations of (DTPA) available Mn was significantly higher in the soil under beech only in the 0–10 cm layer, whereas the fast decomposition of organic matter in the Mediterranean zone resulted in higher concentrations of available Mn in the Ofh soil horizon of the maquis plot. The available Mn did not correlate with soil pH. These findings mean that high concentrations of available Mn do not always entail higher uptake. The soil pH played a predominant role for the high concentrations in the vegetation of the beech forest

    The influence of forest types on manganese content in soils

    No full text
    The concentrations of available and total Mn were determined in the soils of three different forest ecosystems, i.e. a maquis forest, a beech forest and fir one. The concentrations of total Mn in the deeper mineral horizons reflected the type of patent material, but in the surface layers, the more acidic soil (in the beech forest) had the higher concentrations. This was due to the high concentrations of Mn in the standing leaves and litterfall of beech trees, which brought about high litterfall fluxes of Mn in that forest. However, the concentrations of (DTPA) available Mn was significantly higher in the soil under beech only in the 0–10 cm layer, whereas the fast decomposition of organic matter in the Mediterranean zone resulted in higher concentrations of available Mn in the Ofh soil horizon of the maquis plot. The available Mn did not correlate with soil pH. These findings mean that high concentrations of available Mn do not always entail higher uptake. The soil pH played a predominant role for the high concentrations in the vegetation of the beech forest

    The influence of forest types on manganese content in soils

    No full text
    The concentrations of available and total Mn were determined in the soils of three different forest ecosystems, i.e. a maquis forest, a beech forest and fir one. The concentrations of total Mn in the deeper mineral horizons reflected the type of patent material, but in the surface layers, the more acidic soil (in the beech forest) had the higher concentrations. This was due to the high concentrations of Mn in the standing leaves and litterfall of beech trees, which brought about high litterfall fluxes of Mn in that forest. However, the concentrations of (DTPA) available Mn was significantly higher in the soil under beech only in the 0–10 cm layer, whereas the fast decomposition of organic matter in the Mediterranean zone resulted in higher concentrations of available Mn in the Ofh soil horizon of the maquis plot. The available Mn did not correlate with soil pH. These findings mean that high concentrations of available Mn do not always entail higher uptake. The soil pH played a predominant role for the high concentrations in the vegetation of the beech forest

    Soil Optical and Hydraulic Properties of Burnt Forest Areas in Greece after the Implementation of Postfire Restoration Works–Preliminary Results

    No full text
    The short-term changes in micrometeorological and hydraulic attributes of burnt forest soils were evaluated under the influence of three types of post-fire restoration works (wattles, log barriers, and log dams). Comparisons between the two zones (erosion EZ and deposition DZ) formed at the area between two consecutive restoration work units were performed. The reflectance presents minor differences in the two zones, being slightly higher in the EZ, whereas cooler surface temperature and higher soil moisture were recorded in the DZ. The DZ can effectively infiltrate precipitation water with rates of about 150% higher compared to the EZ
    corecore