34 research outputs found

    Community-wide assessment of GPCR structure modelling and ligand docking: GPCR Dock 2008

    Get PDF
    With the recent breakthroughs in G protein-coupled receptor structure, one can now compare experimentally determined structures with the most recent modeling and docking methods. A community-wide blind prediction experiment (GPCR Dock 2008) was conducted in coordination with the publication of the human adenosine A2A receptor bound to the ligand ZM241385 crystal structure (Science 322, 1211 (2008)). Twenty-nine participating groups submitted 206 models that were evaluated for the accuracy of the ligand binding mode and the overall receptor model. Several new insights emerged including the critical importance of disulfide bonds in the extracellular loops, helix residue registry, and domain knowledge

    Characterization of Pyrrolidinyl-hexahydro-pyranopiperazines as a Novel Kappa Opioid Receptor Agonist Scaffold

    Get PDF
    The kappa agonist structure–activity relationship around the novel, pyrrolidinyl substituted pyranopiperazine scaffold was developed. More specifically, the dichloroPhenylAcetamide-Pyrrolidinyl-PyranoPiperazine (PAPPP) core A was the focus of our work. The modulation of kappa receptor potency/G-protein activation and arrestin recruitment with respect to changes of the piperazine R group in A was demonstrated. Reduced β2-arrestin recruitment and differential G-protein bias were observed for select analogues. To better understand the subtlety in receptor signaling, analogues were profiled as the resolved enantiomers. To determine in vivo target engagement, a subset of compounds was tested in mice for stimulation of serum prolactin, a neuroendocrine biomarker of KOR-agonist effects. Additional in vivo characterization included measurement of potential unwanted effects of kappa receptor activation such as sedation. These studies demonstrate a novel kappa receptor agonist scaffold with potential for G-protein signaling bias to probe in vivo pharmacology

    Discovery of a novel class of negative allosteric modulator of the dopamine D2 receptor through fragmentation of a bitopic ligand

    Get PDF
    We recently demonstrated that SB269652 (1) engages one protomer of a dopamine D2 receptor (D2R) dimer in a bitopic mode to allosterically inhibit the binding of dopamine at the other protomer. Herein, we investigate structural deter- minants for allostery, focusing on modifications to three moieties within 1. We find that orthosteric “head” groups with small 7-substituents were important to maintain the limited negative cooperativity of analogues of 1, and replacement of the tetrahydroisoquinoline head group with other D2R “privileged structures” generated orthosteric antagonists. Additionally, replacement of the cyclohexylene linker with polymethylene chains conferred linker length dependency in allosteric pharmacology. We validated the importance of the indolic NH as a hydrogen bond donor moiety for maintaining allostery. Replacement of the indole ring with azaindole conferred a 30-fold increase in affinity while maintaining negative cooperativity. Combined, these results provide novel SAR insight for bitopic ligands that act as negative allosteric modulators of the D2R

    Development of a Highly Selective Plasmodium falciparum Proteasome Inhibitor with Anti-malaria Activity in Humanized Mice.

    Get PDF
    Plasmodium falciparum proteasome (Pf20S) inhibitors are active against Plasmodium at multiple stages-erythrocytic, gametocyte, liver, and gamete activation stages-indicating that selective Pf20S inhibitors possess the potential to be therapeutic, prophylactic, and transmission-blocking antimalarials. Starting from a reported compound, we developed a noncovalent, macrocyclic peptide inhibitor of the malarial proteasome with high species selectivity and improved pharmacokinetic properties. The compound demonstrates specific, time-dependent inhibition of the β5 subunit of the Pf20S, kills artemisinin-sensitive and artemisinin-resistant P. falciparum isolates in vitro and reduces parasitemia in humanized, P. falciparum-infected mice

    Antimalarial proteasome inhibitor reveals collateral sensitivity from intersubunit interactions and fitness cost of resistance.

    Get PDF
    We describe noncovalent, reversible asparagine ethylenediamine (AsnEDA) inhibitors of the Plasmodium falciparum proteasome (Pf20S) β5 subunit that spare all active subunits of human constitutive and immuno-proteasomes. The compounds are active against erythrocytic, sexual, and liver-stage parasites, against parasites resistant to current antimalarials, and against P. falciparum strains from patients in Africa. The β5 inhibitors synergize with a β2 inhibitor in vitro and in mice and with artemisinin. P. falciparum selected for resistance to an AsnEDA β5 inhibitor surprisingly harbored a point mutation in the noncatalytic β6 subunit. The β6 mutant was resistant to the species-selective Pf20S β5 inhibitor but remained sensitive to the species-nonselective β5 inhibitors bortezomib and carfilzomib. Moreover, resistance to the Pf20S β5 inhibitor was accompanied by increased sensitivity to a Pf20S β2 inhibitor. Finally, the β5 inhibitor-resistant mutant had a fitness cost that was exacerbated by irradiation. Thus, used in combination, multistage-active inhibitors of the Pf20S β5 and β2 subunits afford synergistic antimalarial activity with a potential to delay the emergence of resistance to artemisinins and each other

    Community-wide assessment of GPCR structure modelling and ligand docking: GPCR Dock 2008

    Get PDF
    Recent breakthroughs in the determination of the crystal structures of G protein-coupled receptors (GPCRs) have provided new opportunities for structure-based drug design strategies targeting this protein family. With the aim of evaluating the current status of GPCR structure prediction and ligand docking, a community-wide, blind prediction assessment - GPCR Dock 2008 - was conducted in coordination with the publication of the crystal structure of the human adenosine A2Areceptor bound to the ligand ZM241385. Twenty-nine groups submitted 206 structural models before the release of the experimental structure, which were evaluated for the accuracy of the ligand binding mode and the overall receptor model compared with the crystal structure. This analysis highlights important aspects for success and future development, such as accurate modelling of structurally divergent regions and use of additional biochemical insight such as disulphide bridges in the extracellular loops

    Developing new computational methods for characterization ORFS with unknown function

    No full text
    M.S.Mark Borodovsk

    Predicting structurally conserved contacts for homologous proteins using sequence conservation filters

    Full text link
    The prediction of intramolecular contacts has a useful application in predicting the three-dimensional structures of proteins. The accuracy of the template-based contact prediction methods depends on the quality of the template structures. To reduce the false positive predictions associated with using the entire set of template-derived contacts, we develop selection filters that use sequence conservation information to predict subsets of contacts more likely to be structurally conserved between the template and the target. The method is developed specifically for protein families with few available templates such as the G protein-coupled receptor (GPCR) family. It is validated on a test set of 342 template-target pairs from three protein families, and applied to one template-target pair from the GPCR family. We find that the filter selection method increases the accuracy of contact prediction with sufficient coverage for structure prediction. Proteins 2009. © 2009 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/64098/1/22456_ftp.pd
    corecore