50 research outputs found

    DataONE principles with CI/Executive Team Comments

    Get PDF

    Common Errors in Ecological Data Sharing

    Get PDF
    Objectives: (1) to identify common errors in data organization and metadata completeness that would preclude a “reader” from being able to interpret and re-use the data for a new purpose; and (2) to develop a set of best practices derived from these common errors that would guide researchers in creating more usable data products that could be readily shared, interpreted, and used. Methods: We used directed qualitative content analysis to assess and categorize data and metadata errors identified by peer reviewers of data papers published in the Ecological Society of America’s (ESA) Ecological Archives. Descriptive statistics provided the relative frequency of the errors identified during the peer review process. Results: There were seven overarching error categories: Collection & Organization, Assure, Description, Preserve, Discover, Integrate, and Analyze/Visualize. These categories represent errors researchers regularly make at each stage of the Data Life Cycle. Collection & Organization and Description errors were some of the most common errors, both of which occurred in over 90% of the papers. Conclusions: Publishing data for sharing and reuse is error prone, and each stage of the Data Life Cycle presents opportunities for mistakes. The most common errors occurred when the researcher did not provide adequate metadata to enable others to interpret and potentially re-use the data. Fortunately, there are ways to minimize these mistakes through carefully recording all details about study context, data collection, QA/ QC, and analytical procedures from the beginning of a research project and then including this descriptive information in the metadata

    Habitat Characteristics of Northern Bobwhite Quail-Hunting Party Encounters: A Landscape Perspective

    Get PDF
    Landcover data and bobwhite hunting records were used to assess both hunter habitat preferences and the frequency of northern bobwhite encounters by hunting parties in relation to habitat composition during the 1994-1995 and 1995-1996 hunting seasons at the Joseph W. Jones Ecological Research Center in southern Georgia. Patterns of habitat use by hunters, and the frequency of bobwhite encounters varied within and between years, depending on habitat quality, food availability, and other factors. Landscape-scale analyses of standardized bobwhite covey densities (based on coveys pointed in the field) and habitat composition and configuration for the 1994-1995 hunting season revealed that bobwhite densities were: (1) positively associated with the overall percentage agriculture and food plot habitat (reaching a maximum at 30-35% agriculture); and (2) positively associated with edge complexity, and positively associated with agricultural mean patch size [reaching a maximum at 2-3 hectares (5-6 acres)]. Consequently, larger food plots may be more important for increasing bobwhite encounter rates than numerous very small food plots [ \u3c 0.1 hectares (0.25 acres)]. Results of this, and related ongoing studies, have important implications for both landscape design and multiple use resource management. activities in the context of northern bobwhite habitat management in southern upland pine forest ecosystems

    Effects of Flooding on the Longleaf Pine-Wiregrass Ecosystem

    Get PDF
    Proceedings of the 1995 Georgia Water Resources Conference, April 11 and 12, 1995, Athens, Georgia.Flood waters associated with Tropical Storm Alberto inundated 21 km2 of uplands at Ichauway, a 115 km 2 ecological reserve located in southwestern Georgia. At the landscape scale, sink holes were formed, landslides and erosion occurred along riverine bluffs and terraces, and sediment deposition occurred along all riparian corridors. Xeric habitats, dominated by longleaf pine-wiregrass and scrub-shrub, were disproportionately affected by flooding on an area basis. Longleaf pine seedlings and saplings with apical meristems above high water always survived. Mortality of submerged longleaf pine and wiregrass was positively related to flooding depth and duration. Treefall in bluff riparian zones and hardwood hammocks reflected species composition within the two habitats although oaks and southern red cedar were the most commonly downed trees in both habitats. Higher treefall was observed in bluff riparian zones and may be related to constrained stream channel geomorphology. Although infrequent, flooding appears to be important in governing the structure and function of the longleaf pine-wiregrass ecosystem and, along with other disturbances, should be explicitly incorporated into reserve and riparian corridor planning and design.Sponsored and Organized by: U.S. Geological Survey, Georgia Department of Natural Resources, The University of Georgia, Georgia State University, Georgia Institute of TechnologyThis book was published by the Carl Vinson Institute of Government, The University of Georgia, Athens, Georgia 30602 with partial funding provided by the U.S. Department of Interior, Geological Survey, through the Georgia Water Research Institute as authorized by the Water Resources Research Act of 1990 (P.L. 101-397). The views and statements advanced in this publication are solely those of the authors and do not represent official views or policies of the University of Georgia or the U.S. Geological Survey or the conference sponsors

    The Bari Manifesto : An interoperability framework for essential biodiversity variables

    Get PDF
    Essential Biodiversity Variables (EBV) are fundamental variables that can be used for assessing biodiversity change over time, for determining adherence to biodiversity policy, for monitoring progress towards sustainable development goals, and for tracking biodiversity responses to disturbances and management interventions. Data from observations or models that provide measured or estimated EBV values, which we refer to as EBV data products, can help to capture the above processes and trends and can serve as a coherent framework for documenting trends in biodiversity. Using primary biodiversity records and other raw data as sources to produce EBV data products depends on cooperation and interoperability among multiple stakeholders, including those collecting and mobilising data for EBVs and those producing, publishing and preserving EBV data products. Here, we encapsulate ten principles for the current best practice in EBV-focused biodiversity informatics as 'The Bari Manifesto', serving as implementation guidelines for data and research infrastructure providers to support the emerging EBV operational framework based on trans-national and cross-infrastructure scientific workflows. The principles provide guidance on how to contribute towards the production of EBV data products that are globally oriented, while remaining appropriate to the producer's own mission, vision and goals. These ten principles cover: data management planning; data structure; metadata; services; data quality; workflows; provenance; ontologies/vocabularies; data preservation; and accessibility. For each principle, desired outcomes and goals have been formulated. Some specific actions related to fulfilling the Bari Manifesto principles are highlighted in the context of each of four groups of organizations contributing to enabling data interoperability - data standards bodies, research data infrastructures, the pertinent research communities, and funders. The Bari Manifesto provides a roadmap enabling support for routine generation of EBV data products, and increases the likelihood of success for a global EBV framework.Peer reviewe

    The Tao of open science for ecology

    Get PDF
    The field of ecology is poised to take advantage of emerging technologies that facilitate the gathering, analyzing, and sharing of data, methods, and results. The concept of transparency at all stages of the research process, coupled with free and open access to data, code, and papers, constitutes “open science.” Despite the many benefits of an open approach to science, a number of barriers to entry exist that may prevent researchers from embracing openness in their own work. Here we describe several key shifts in mindset that underpin the transition to more open science. These shifts in mindset include thinking about data stewardship rather than data ownership, embracing transparency throughout the data life‐cycle and project duration, and accepting critique in public. Though foreign and perhaps frightening at first, these changes in thinking stand to benefit the field of ecology by fostering collegiality and broadening access to data and findings. We present an overview of tools and best practices that can enable these shifts in mindset at each stage of the research process, including tools to support data management planning and reproducible analyses, strategies for soliciting constructive feedback throughout the research process, and methods of broadening access to final research products

    Support for maternal manipulation of developmental nutrition in a facultatively eusocial bee, Megalopta genalis (Halictidae)

    Get PDF
    Developmental maternal effects are a potentially important source of phenotypic variation, but they can be difficult to distinguish from other environmental factors. This is an important distinction within the context of social evolution, because if variation in offspring helping behavior is due to maternal manipulation, social selection may act on maternal phenotypes, as well as those of offspring. Factors correlated with social castes have been linked to variation in developmental nutrition, which might provide opportunity for females to manipulate the social behavior of their offspring. Megalopta genalis is a mass-provisioning facultatively eusocial sweat bee for which production of males and females in social and solitary nests is concurrent and asynchronous. Female offspring may become either gynes (reproductive dispersers) or workers (non-reproductive helpers). We predicted that if maternal manipulation plays a role in M. genalis caste determination, investment in daughters should vary more than for sons. The mass and protein content of pollen stores provided to female offspring varied significantly more than those of males, but volume and sugar content did not. Sugar content varied more among female eggs in social nests than in solitary nests. Provisions were larger, with higher nutrient content, for female eggs and in social nests. Adult females and males show different patterns of allometry, and their investment ratio ranged from 1.23 to 1.69. Adult body weight varied more for females than males, possibly reflecting increased variation in maternal investment in female offspring. These differences are consistent with a role for maternal manipulation in the social plasticity observed in M. genalis

    Ten Simple Rules for Creating a Good Data Management Plan.

    No full text
    corecore