2,556 research outputs found
Differential neural encoding of sensorimotor and visual body representations.
Sensorimotor processing specifically impacts mental body representations. In particular, deteriorated somatosensory input (as after complete spinal cord injury) increases the relative weight of visual aspects of body parts' representations, leading to aberrancies in how images of body parts are mentally manipulated (e.g. mental rotation). This suggests that a sensorimotor or visual reference frame, respectively, can be relatively dominant in local (hands) versus global (full-body) bodily representations. On this basis, we hypothesized that the recruitment of a specific reference frame could be reflected in the activation of sensorimotor versus visual brain networks. To this aim, we directly compared the brain activity associated with mental rotation of hands versus full-bodies. Mental rotation of hands recruited more strongly the supplementary motor area, premotor cortex, and secondary somatosensory cortex. Conversely, mental rotation of full-bodies determined stronger activity in temporo-occipital regions, including the functionally-localized extrastriate body area. These results support that (1) sensorimotor and visual frames of reference are used to represent the body, (2) two distinct brain networks encode local or global bodily representations, and (3) the extrastriate body area is a multimodal region involved in body processing both at the perceptual and representational level
Lost photon enhances superresolution
Quantum imaging can beat classical resolution limits, imposed by diffraction
of light. In particular, it is known that one can reduce the image blurring and
increase the achievable resolution by illuminating an object by entangled light
and measuring coincidences of photons. If an -photon entangled state is used
and the th-order correlation function is measured, the point-spread function
(PSF) effectively becomes times narrower relatively to classical
coherent imaging. Quite surprisingly, measuring -photon correlations is not
the best choice if an -photon entangled state is available. We show that for
measuring -photon coincidences (thus, ignoring one of the available
photons), PSF can be made even narrower. This observation paves a way for a
strong conditional resolution enhancement by registering one of the photons
outside the imaging area. We analyze the conditions necessary for the
resolution increase and propose a practical scheme, suitable for observation
and exploitation of the effect
Substantial increases in healthcare students’ state empathy scores owing to participation in a single improvisation session
Purpose: To determine whether the 12-item state empathy scale could be modified reliably to measure empathy in healthcare professions students and to detect changes in their empathy owing to a single improvisation (improv) session. Methods: Three cohorts of students from two healthcare professions programs (total = 165 students) participated in an improv session. During the session, one of the researchers (BS) tasked the students with several improv activities. Participants’ self-reported state empathy scores were assessed at three time points (pre-improv, post-improv, and end of semester) using revised, in-class paper versions of the State Empathy Scale. Results: The exploratory factor analysis revealed a single factor solution for the revised scale, justifying the creation of an overall state empathy score from the questionnaire. Cronbach’s alpha reliability values averaged 0.87. Students’ mean empathy scores were higher directly after the improv session than directly prior to the session (p \u3c 0.0001; effect size = r = 0.67, 0.55, and 0.79 for cohorts 1, 2, and 3, respectively). Conclusions: These findings show that a single one- or two-hour improv session can foster substantial increases in healthcare professional students’ state empathy for one another. Greater healthcare professional empathy and compassion foster better healthcare team cooperation and patient outcomes, so healthcare professionals and their students should engage in such empathy-enhancing activities at regular intervals throughout their training and careers
Deforming glassy polystyrene: Influence of pressure, thermal history, and deformation mode on yielding and hardening
The toughness of a polymer glass is determined by the interplay of yielding, strain softening, and strain hardening. Molecular-dynamics simulations of a typical polymer glass, atactic polystyrene, under the influence of active deformation have been carried out to enlighten these processes. It is observed that the dominant interaction for the yield peak is of interchain nature and for the strain
hardening of intrachain nature. A connection is made with the microscopic cage-to-cage motion. It is found that the deformation does not lead to complete erasure of the thermal history but that differences persist at large length scales. Also we find that the strain-hardening modulus increases with increasing external pressure. This new observation cannot be explained by current theories
such as the one based on the entanglement picture and the inclusion of this effect will lead to an improvement in constitutive modeling
Comparing Payments Between Sociobehavioral and Biomedical Studies in a Large Research University in Southern California
Given the dearth of regulatory guidance and empirical research on practices of providing payments to research participants, our study aimed to examine whether there were significant differences in payment amounts between sociobehavioral and biomedical studies and to examine study factors that may explain payment differences. This study reviewed 100 sociobehavioral and 31 biomedical protocols. Results showed that both biomedical studies and sociobehavioral studies had a wide variation of payments and, on average, the biomedical studies paid significantly more. Additionally, more biomedical studies offered payment than sociobehavioral studies. The primary factors that explained differences in payment amounts between sociobehavioral and biomedical studies were the number of study visits, study time, participation type, risk level, and research method. These findings provide pilot data to help inform future ethical decision-making and guidance regarding payment practices
Structure of hard-hypersphere fluids in odd dimensions
The structural properties of single component fluids of hard hyperspheres in
odd space dimensionalities are studied with an analytical approximation
method that generalizes the Rational Function Approximation earlier introduced
in the study of hard-sphere fluids [S. B. Yuste and A. Santos, Phys. Rev. A
{\bf 43}, 5418 (1991)]. The theory makes use of the exact form of the radial
distribution function to first order in density and extends it to finite
density by assuming a rational form for a function defined in Laplace space,
the coefficients being determined by simple physical requirements. Fourier
transform in terms of reverse Bessel polynomials constitute the mathematical
framework of this approximation, from which an analytical expression for the
static structure factor is obtained. In its most elementary form, the method
recovers the solution of the Percus-Yevick closure to the Ornstein-Zernike
equation for hyperspheres at odd dimension. The present formalism allows one to
go beyond by yielding solutions with thermodynamic consistency between the
virial and compressibility routes to any desired equation of state. Excellent
agreement with available computer simulation data at and is
obtained. As a byproduct of this study, an exact and explicit polynomial
expression for the intersection volume of two identical hyperspheres in
arbitrary odd dimensions is given.Comment: 18 pages, 7 figures; v2: new references added plus minor changes; to
be published in PR
Does Greater Low Frequency EEG Activity in Normal Immaturity and in Children with Epilepsy Arise in the Same Neuronal Network?
Greater low frequency power (<8Hz) in the electroencephalogram (EEG) at rest is normal in the immature developing brain of children when compared to adults. Children with epilepsy also have greater low frequency interictal resting EEG activity. Whether these power elevations reflect brain immaturity due to a developmental lag or the underlying epileptic pathophysiology is unclear. The present study addresses this question by analyzing spectral EEG topographies and sources for normally developing children and children with epilepsy. We first compared the resting EEG of healthy children to that of healthy adults to isolate effects related to normal brain immaturity. Next, we compared the EEG from 10 children with generalized cryptogenic epilepsy to the EEG of 24 healthy children to isolate effects related to epilepsy. Spectral analysis revealed that global low (delta: 1-3Hz, theta: 4-7Hz), medium (alpha: 8-12Hz) and high (beta: 13-25Hz) frequency EEG activity was greater in children without epilepsy compared to adults, and even further elevated for children with epilepsy. Topographical and tomographic EEG analyses showed that normal immaturity corresponded to greater delta and theta activity at fronto-central scalp and brain regions, respectively. In contrast, the epilepsy-related activity elevations were predominantly in the alpha band at parieto-occipital electrodes and brain regions, respectively. We conclude that lower frequency activity can be a sign of normal brain immaturity or brain pathology depending on the specific topography and frequency of the oscillating neuronal networ
Leukocyte DNA as Surrogate for the Evaluation of Imprinted Loci Methylation in Mammary Tissue DNA
There is growing interest in identifying surrogate tissues to identify epimutations in cancer patients since primary target tissues are often difficult to obtain. Methylation patterns at imprinted loci are established during gametogenesis and post fertilization and their alterations have been associated with elevated risk of cancer. Methylation at several imprinted differentially methylated regions (GRB10 ICR, H19 ICR, KvDMR, SNRPN/SNURF ICR, IGF2 DMR0, and IGF2 DMR2) were analyzed in DNA from leukocytes and mammary tissue (normal, benign diseases, or malignant tumors) from 87 women with and without breast cancer (average age of cancer patients: 53; range: 31–77). Correlations between genomic variants and DNA methylation at the studied loci could not be assessed, making it impossible to exclude such effects. Methylation levels observed in leukocyte and mammary tissue DNA were close to the 50% expected for monoallellic methylation. While no correlation was observed between leukocyte and mammary tissue DNA methylation for most of the analyzed imprinted genes, Spearman's correlations were statistically significant for IGF2 DMR0 and IGF2 DMR2, although absolute methylation levels differed. Leukocyte DNA methylation levels of selected imprinted genes may therefore serve as surrogate markers of DNA methylation in cancer tissue
Recommended from our members
Environmental exposures during windows of susceptibility for breast cancer: a framework for prevention research.
BackgroundThe long time from exposure to potentially harmful chemicals until breast cancer occurrence poses challenges for designing etiologic studies and for implementing successful prevention programs. Growing evidence from animal and human studies indicates that distinct time periods of heightened susceptibility to endocrine disruptors exist throughout the life course. The influence of environmental chemicals on breast cancer risk may be greater during several windows of susceptibility (WOS) in a woman's life, including prenatal development, puberty, pregnancy, and the menopausal transition. These time windows are considered as specific periods of susceptibility for breast cancer because significant structural and functional changes occur in the mammary gland, as well as alterations in the mammary micro-environment and hormone signaling that may influence risk. Breast cancer research focused on these breast cancer WOS will accelerate understanding of disease etiology and prevention.Main textDespite the plausible heightened mechanistic influences of environmental chemicals on breast cancer risk during time periods of change in the mammary gland's structure and function, most human studies of environmental chemicals are not focused on specific WOS. This article reviews studies conducted over the past few decades that have specifically addressed the effect of environmental chemicals and metals on breast cancer risk during at least one of these WOS. In addition to summarizing the broader evidence-base specific to WOS, we include discussion of the NIH-funded Breast Cancer and the Environment Research Program (BCERP) which included population-based and basic science research focused on specific WOS to evaluate associations between breast cancer risk and particular classes of endocrine-disrupting chemicals-including polycyclic aromatic hydrocarbons, perfluorinated compounds, polybrominated diphenyl ethers, and phenols-and metals. We outline ways in which ongoing transdisciplinary BCERP projects incorporate animal research and human epidemiologic studies in close partnership with community organizations and communication scientists to identify research priorities and effectively translate evidence-based findings to the public and policy makers.ConclusionsAn integrative model of breast cancer research is needed to determine the impact and mechanisms of action of endocrine disruptors at different WOS. By focusing on environmental chemical exposure during specific WOS, scientists and their community partners may identify when prevention efforts are likely to be most effective
- …