76 research outputs found

    1-[Bicyclo[4.2.0]octa-1(6),2,4-trien-3-yl]-3-[bicyclo[4.2.0]octa-1(6),2,4-trien-3-yl­methyl]imidazolium hexa­fluoro­phos­phate

    Get PDF
    In the title compound, C20H19N2 +·PF6 −, the two benzocyclo­butene units are essentially planar and they form dihedral angles of 38.0 (2) and 72.7 (2)°, with the central imidazolium ring. In the crystal structure, weak C—H⋯π and π-–π stacking inter­actions [centroid–centroid distance = 3.742 (2) Å] contribute to the stability of the crystal structure. The PF6 − ion is disordered over two positions with site occupancies of 0.869 (9) and 0.131 (9)

    NMR structural studies of interactions of a small, nonpeptidyl Tpo mimic with the thrombopoietin receptor extracellular juxtamembrane and transmembrane domains.

    No full text
    Thrombopoietin (Tpo) is a glycoprotein growth factor that supports hematopoietic stem cell survival and expansion and is the principal regulator of megakaryocyte growth and differentiation. Several small, nonpeptidyl molecules have been identified as selective human Tpo receptor (hTpoR) agonists. To understand how the small molecule Tpo mimic SB394725 interacts and activates hTpoR, we performed receptor domain swap and mutagenesis studies. The results suggest that SB394725 interacts specifically with the extracellular juxtamembrane region (JMR) and the transmembrane (TM) domain of hTpoR. Solution and solid-state NMR structural studies using a peptide containing the JMR-TM sequences showed that this region of hTpoR, unexpectedly, consists of two alpha-helices separated by a few nonhelical residues. SB394725 interacts specifically with His-499 in the TM domain and a few distinct residues in the JMR-TM region and affects several specific C-terminal TM domain residues. The unique structural information provided by these studies both sheds light on the distinctive mechanism of action of SB394725 and provides valuable insight into the mechanism of ligand-induced cytokine receptor activation
    • …
    corecore