12 research outputs found

    Mycobacterium liflandii Infection in European Colony of Silurana tropicalis

    Get PDF
    Mycobacterium liflandii causes a fatal frog disease in captive anurans. Here we report, to our knowledge, the first epizootic of mycobacteriosis in a European colony of clawed frogs (Silurana tropicalis), previously imported from a United States biologic supply company. Our findings suggest the emerging potential of this infection through international trade

    Surveillance for zoonotic and selected pathogens in harbor seals Phoca vitulina from central California

    Get PDF
    We thank The John H. Prescott Marine Mammal Rescue Assistance Grant Program and Valentine Family Foundation for funding for this project.The infection status of harbor seals Phoca vitulina in central California, USA, was evaluated through broad surveillance for pathogens in stranded and wild-caught animals from 2001 to 2008, with most samples collected in 2007 and 2008. Stranded animals from Mendocino County to San Luis Obispo County were sampled at a rehabilitation facility: The Marine Mammal Center (TMMC, n = 175); wild-caught animals were sampled at 2 locations: San Francisco Bay (SF, n = 78) and Tomales Bay (TB, n = 97), that differed in degree of urbanization. Low prevalences of Salmonella, Campylobacter, Giardia, and Cryptosporidium were detected in the feces of stranded and wild-caught seals. Clostridium perfringens and Escherichia coli were more prevalent in the feces of stranded (58% [78 out of 135] and 76% [102 out of 135]) than wild-caught (42% [45 out of 106] and 66% [68 out of 106]) seals, whereas Vibrio spp. were 16 times more likely to be cultured from the feces of seals from SF than TB or TMMC (pPublisher PDFPeer reviewe

    Surveillance for zoonotic and selected pathogens in harbor seals <em>Phoca vitulina </em>from central California

    No full text
    The infection status of harbor seals Phoca vitulina in central California, USA, was evaluated through broad surveillance for pathogens in stranded and wild-caught animals from 2001 to 2008, with most samples collected in 2007 and 2008. Stranded animals from Mendocino County to San Luis Obispo County were sampled at a rehabilitation facility: The Marine Mammal Center (TMMC, n = 175); wild-caught animals were sampled at 2 locations: San Francisco Bay (SF, n = 78) and Tomales Bay (TB, n = 97), that differed in degree of urbanization. Low prevalences of Salmonella, Campylobacter, Giardia, and Cryptosporidium were detected in the feces of stranded and wild-caught seals. Clostridium perfringens and Escherichia coli were more prevalent in the feces of stranded (58% [78 out of 135] and 76% [102 out of 135]) than wild-caught (42% [45 out of 106] and 66% [68 out of 106]) seals, whereas Vibrio spp. were 16 times more likely to be cultured from the feces of seals from SF than TB or TMMC (

    Interspecific hybridization and bioactive alkaloid variation increases diversity in endophytic Epichloë

    No full text
    Studying geographic variation of microbial mutualists, especially variation in traits related to benefits they provide their host, is critical for understanding how these associations impact key ecological processes. In this study, we investigate the phylogenetic population structure of Epichloë species within Bromus laevipes, a native cool‐season bunchgrass found predominantly in California. Phylogenetic classification supported inference of three distinct Epichloë taxa, of which one was nonhybrid and two were interspecific hybrids. Inheritance of mating‐type idiomorphs revealed that at least one of the hybrid species arose from independent hybridization events. We further investigated the geographic variation of endophyte‐encoded alkaloid genes, which is often associated with key benefits of natural enemy protection for the host. Marker diversity at the ergot alkaloid, loline, indole‐diterpene, and peramine loci revealed four alkaloid genotypes across the three identified Epichloë species. Predicted chemotypes were tested using endophyte‐infected plant material that represented each endophyte genotype, and 11 of the 13 predicted alkaloids were confirmed. This multifaceted approach combining phylogenetic, genotypic, and chemotypic analyses allowed us to reconstruct the diverse evolutionary histories of Epichloë species present within B. laevipes and highlight the complex and dynamic processes underlying these grass‐endophyte symbioses. Combining phylogenetic, genotypic and chemotypic analyses to reconstruct the diverse evolutionary histories of Epichloë species present within a single host, highlights the complex and dynamic processes underlying grass‐endophyte symbioses
    corecore