66 research outputs found

    Detection of gene communities in multi-networks reveals cancer drivers

    Get PDF
    We propose a new multi-network-based strategy to integrate different layers of genomic information and use them in a coordinate way to identify driving cancer genes. The multi-networks that we consider combine transcription factor co-targeting, microRNA co-targeting, protein-protein interaction and gene co-expression networks. The rationale behind this choice is that gene co-expression and protein-protein interactions require a tight coregulation of the partners and that such a fine tuned regulation can be obtained only combining both the transcriptional and post-transcriptional layers of regulation. To extract the relevant biological information from the multi-network we studied its partition into communities. To this end we applied a consensus clustering algorithm based on state of art community detection methods. Even if our procedure is valid in principle for any pathology in this work we concentrate on gastric, lung, pancreas and colorectal cancer and identified from the enrichment analysis of the multi-network communities a set of candidate driver cancer genes. Some of them were already known oncogenes while a few are new. The combination of the different layers of information allowed us to extract from the multi-network indications on the regulatory pattern and functional role of both the already known and the new candidate driver genes.Comment: minor modification

    1H, 13C and 15N assignment of the paramagnetic high potential iron–sulfur protein (HiPIP) PioC from Rhodopseudomonas palustris TIE-1

    Get PDF
    High potential iron–sulfur proteins (HiPIPs) are a class of small proteins (50–100 aa residues), containing a 4Fe–4S iron–sulfur cluster. The 4Fe–4S cluster shuttles between the oxidation states [Fe4S4]3+/2+, with a positive redox potential in the range (500–50 mV) throughout the different known HiPIPs. Both oxidation states are paramagnetic at room temperature. HiPIPs are electron transfer proteins, isolated from photosynthetic bacteria and usually provide electrons to the photosynthetic reaction-center. PioC, the HIPIP isolated from Rhodopseudomonas palustris TIE-1, is the smallest among all known HiPIPs. Despite their small dimensions, an extensive NMR assignment is only available for two of them, because paramagnetism prevents the straightforward assignment of all resonances. We report here the complete NMR assignment of 1H, 13C and 15N signals for the reduced [Fe4S4]2+ state of the protein. A set of double and triple resonance experiments performed with standardized parameters/datasets provided the assignment of about 72% of the residues. The almost complete resonance assignment (99.5% of backbone and ca. 90% of side chain resonances) was achieved by combining the above information with those obtained using a second set of NMR experiments, in which acquisition and processing parameters, as well as pulse sequences design, were optimized to account for the peculiar features of this paramagnetic protein.publishersversionpublishe

    A non-systematic approach

    Get PDF
    Funding Information: This work benefited from access to CERM/CIRMMP, the Instruct-ERIC Italy centre. Financial support was provided by European EC Horizon 2020 TIMB3 (Project 810856) Instruct-ERIC (PID 4509). This article is based upon work from COST Action CA15133, supported by COST (European Cooperation in Science and Technology) . Fondazione Ente Cassa di Risparmio di Firenze ( CRF 2016 0985 ) is acknowledged for providing fellowship to MI. This work was funded by national funds through FCT– Fundação para a Ciência e a Tecnologia , I.P., Project MOSTMICRO-ITQB with refs UIDB/04612/2020 and UIDP/04612/2020, and Fundação para a Ciência e a Tecnologia (FCT) Portugal is acknowledged for Grant PD/BD/135187/2017 to IBT. Funding Information: This work benefited from access to CERM/CIRMMP, the Instruct-ERIC Italy centre. Financial support was provided by European EC Horizon 2020 TIMB3 (Project 810856) Instruct-ERIC (PID 4509). This article is based upon work from COST Action CA15133, supported by COST (European Cooperation in Science and Technology). Fondazione Ente Cassa di Risparmio di Firenze (CRF 2016 0985) is acknowledged for providing fellowship to MI. This work was funded by national funds through FCT? Funda??o para a Ci?ncia e a Tecnologia, I.P. Project MOSTMICRO-ITQB with refs UIDB/04612/2020 and UIDP/04612/2020, and Funda??o para a Ci?ncia e a Tecnologia (FCT) Portugal is acknowledged for Grant PD/BD/135187/2017 to IBT. Publisher Copyright: © 2020 The Author(s) Copyright: Copyright 2020 Elsevier B.V., All rights reserved.The complete assignment of 1H, 13C and 15N protein signals, which is a straightforward task for diamagnetic proteins provided they are folded, soluble and with a molecular mass below 30,000 Da, often becomes an intractable problem in the presence of a paramagnetic center. Indeed, the hyperfine interaction quenches signal intensity; this prevents the detection of scalar and dipolar connectivities and the sequential assignment of protein regions close to the metal ion(s). However, many experiments can be optimized and novel experiments can be designed to circumvent the problem and to revive coherences invisible in standard experiments. The small HiPIP protein PioC provides an interesting case to address this issue: the prosthetic group is a [Fe4S4]2+ cluster that is bound to the 54 amino acids protein via four cysteine residues. The four cluster-bound cysteine residues adopt different binding conformations and therefore each cysteine is affected by paramagnetic relaxation to different extent. A network of tailored experiments succeeded to obtain the complete resonance assignment of cluster bound residues.publishersversionpublishe

    Measuring transverse relaxation in highly paramagnetic systems

    Get PDF
    The enhancement of nuclear relaxation rates due to the interaction with a paramagnetic center (known as Paramagnetic Relaxation Enhancement) is a powerful source of structural and dynamics information, widely used in structural biology. However, many signals affected by the hyperfine interaction relax faster than the evolution periods of common NMR experiments and therefore they are broadened beyond detection. This gives rise to a so-called blind sphere around the paramagnetic center, which is a major limitation in the use of PREs. Reducing the blind sphere is extremely important in paramagnetic metalloproteins. The identification, characterization, and proper structural restraining of the first coordination sphere of the metal ion(s) and its immediate neighboring regions is key to understand their biological function. The novel HSQC scheme we propose here, that we termed R2-weighted, HSQC-AP, achieves this aim by detecting signals that escaped detection in a conventional HSQC experiment and provides fully reliable R2 values in the range of 1H R2 rates ca. 50–400 s−1. Independently on the type of paramagnetic center and on the size of the molecule, this experiment decreases the radius of the blind sphere and increases the number of detectable PREs. Here, we report the validation of this approach for the case of PioC, a small protein containing a high potential 4Fe-4S cluster in the reduced [Fe4S4]2+ form. The blind sphere was contracted to a minimal extent, enabling the measurement of R2 rates for the cluster coordinating residues.publishersversionpublishe

    Molecular Inverse Comorbidity between Alzheimer’s Disease and Lung Cancer: New Insights from Matrix Factorization

    Get PDF
    International audienceMatrix factorization (MF) is an established paradigm for large-scale biological data analysis with tremendous potential in computational biology. Here, we challenge MF in depicting the molecular bases of epidemiologically described disease-disease (DD) relationships. As a use case, we focus on the inverse comorbidity association between Alzheimer's disease (AD) and lung cancer (LC), described as a lower than expected probability of developing LC in AD patients. To this day, the molecular mechanisms underlying DD relationships remain poorly explained and their better characterization might offer unprecedented clinical opportunities. To this goal, we extend our previously designed MF-based framework for the molecular characterization of DD relationships. Considering AD-LC inverse comorbidity as a case study, we highlight multiple molecular mechanisms, among which we confirm the involvement of processes related to the immune system and mitochondrial metabolism. We then distinguish mechanisms specific to LC from those shared with other cancers through a pan-cancer analysis. Additionally, new candidate molecular players, such as estrogen receptor (ER), cadherin 1 (CDH1) and histone deacetylase (HDAC), are pinpointed as factors that might underlie the inverse relationship, opening the way to new investigations. Finally, some lung cancer subtype-specific factors are also detected, also suggesting the existence of heterogeneity across patients in the context of inverse comorbidity

    Molecular engineering of Ghfp, the gonococcal orthologue of neisseria meningitidis factor H binding protein

    Get PDF
    Knowledge of the sequences and structures of proteins produced by microbial pathogens is continuously increasing. Besides offering the possibility of unraveling the mechanisms of pathogenesis at the molecular level, structural information provides new tools for vaccine development, such as the opportunity to improve viral and bacterial vaccine candidates by rational design. Structure-based rational design of antigens can optimize the epitope repertoire in terms of accessibility, stability, and variability. In the present study, we used epitope mapping information on the well-characterized antigen of Neisseria meningitidis factor H binding protein (fHbp) to engineer its gonococcal homologue, Ghfp. Meningococcal fHbp is typically classified in three distinct antigenic variants. We introduced epitopes of fHbp variant 1 onto the surface of Ghfp, which is naturally able to protect against meningococcal strains expressing fHbp of variants 2 and 3. Heterologous epitopes were successfully transplanted, as engineered Ghfp induced functional antibodies against all three fHbp variants. These results confirm that structural vaccinology represents a successful strategy for modulating immune responses, and it is a powerful tool for investigating the extension and localization of immunodominant epitopes

    High familial burden of cancer correlates with improved outcome from immunotherapy in patients with NSCLC independent of somatic DNA damage response gene status

    Get PDF
    Family history of cancer (FHC) is a hallmark of cancer risk and an independent predictor of outcome, albeit with uncertain biologic foundations. We previously showed that FHC-high patients experienced prolonged overall (OS) and progression-free survival (PFS) following PD-1/PD-L1 checkpoint inhibitors. To validate our findings in patients with NSCLC, we evaluated two multicenter cohorts of patients with metastatic NSCLC receiving either first-line pembrolizumab or chemotherapy. From each cohort, 607 patients were randomly case-control matched accounting for FHC, age, performance status, and disease burden. Compared to FHC-low/negative, FHC-high patients experienced longer OS (HR 0.67 [95% CI 0.46-0.95], p\u2009=\u20090.0281), PFS (HR 0.65 [95% CI 0.48-0.89]; p\u2009=\u20090.0074) and higher disease control rates (DCR, 86.4% vs 67.5%, p\u2009=\u20090.0096), within the pembrolizumab cohort. No significant associations were found between FHC and OS/PFS/DCR within the chemotherapy cohort. We explored the association between FHC and somatic DNA damage response (DDR) gene alterations as underlying mechanism to our findings in a parallel cohort of 118 NSCLC, 16.9% of whom were FHC-high. The prevalence of\u2009 65\u20091 somatic DDR gene mutation was 20% and 24.5% (p\u2009=\u20090.6684) in FHC-high vs. FHC-low/negative, with no differences in tumor mutational burden (6.0 vs. 7.6 Mut/Mb, p\u2009=\u20090.6018) and tumor cell PD-L1 expression. FHC-high status identifies NSCLC patients with improved outcomes from pembrolizumab but not chemotherapy, independent of somatic DDR gene status. Prospective studies evaluating FHC alongside germline genetic testing are warranted

    Safety of extended interval dosing immune checkpoint inhibitors:a multicenter cohort study

    Get PDF
    BACKGROUND: Real-life spectrum and survival implications of immune-related adverse events (irAEs) in patients treated with extended interval dosing (ED) immune checkpoint inhibitors (ICIs) are unknown. METHODS: Characteristics of 812 consecutive solid cancer patients who received at least 1 cycle of ED monotherapy (pembrolizumab 400 mg Q6W or nivolumab 480 mg Q4W) after switching from canonical interval dosing (CD; pembrolizumab 200 mg Q3W or nivolumab 240 mg Q2W) or treated upfront with ED were retrieved. The primary objective was to compare irAEs patterns within the same population (before and after switch to ED). irAEs spectrum in patients treated upfront with ED and association between irAEs and overall survival were also described. RESULTS: A total of 550 (68%) patients started ICIs with CD and switched to ED. During CD, 225 (41%) patients developed any grade and 17 (3%) G3 or G4 irAEs; after switching to ED, any grade and G3 or G4 irAEs were experienced by 155 (36%) and 20 (5%) patients. Switching to ED was associated with a lower probability of any grade irAEs (adjusted odds ratio [aOR] = 0.83, 95% confidence interval [CI] = 0.64 to 0.99; P = .047), whereas no difference for G3 or G4 events was noted (aOR = 1.55, 95% CI = 0.81 to 2.94; P = .18). Among patients who started upfront with ED (n = 232, 32%), 107 (41%) developed any grade and 14 (5%) G3 or G4 irAEs during ED. Patients with irAEs during ED had improved overall survival (adjusted hazard ratio [aHR] = 0.53, 95% CI = 0.34 to 0.82; P = .004 after switching; aHR = 0.57, 95% CI = 0.35 to 0.93; P = .025 upfront). CONCLUSIONS: Switching ICI treatment from CD and ED did not increase the incidence of irAEs and represents a safe option also outside clinical trials.</p
    corecore