108 research outputs found

    Ultrasound-assisted synthesis of WOx-decorated ZnO photocatalysts for NOx abatement

    Get PDF
    Heterojunctions based on ZnO have numerous applications, such as water splitting, sensing and energy storage [1]. Recently, ZnO/WO3 composites have shown promising results in the sonocatalytic and photocatalytic degradation of aqueous and gas pollutants [2]. Several synthetic approaches have been reported, including chemical vapor deposition, magnetron sputtering, hydrothermal methods and high temperature annealing. Ultrasound-assisted synthesis can provide a scalable and cost-effective strategy to tailor the catalyst structural and morphological properties [3]. In the present work, pristine ZnO and ZnO/WOx composites were synthesized via a sonochemical method, studying the role of the ultrasound amplitude and mode (continuous/pulsed), metal precursor, WOx content and post-synthetic annealing. The resulting materials were extensively characterized, investigating their structural, morphological, optical, and surface properties. Samples were tested towards the photocatalytic removal of NOx under both UV and visible light irradiation in a batch reactor. A good degree of crystallinity is appreciable even before calcination and better morphological features are observed with respect to reference samples prepared without ultrasounds. The morphological properties can be further tuned by changing the metal precursor and adding a post-synthetic annealing step. Photocatalytic activity is promoted with respect to both benchmark samples (Figure 1)

    Knockout mice reveal a role for protein tyrosine phosphatase H1 in cognition

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The present study has investigated the protein tyrosine phosphatase H1 (PTPH1) expression pattern in mouse brain and its impact on CNS functions.</p> <p>Methods</p> <p>We have previously described a PTPH1-KO mouse, generated by replacing the PTP catalytic and the PDZ domain with a LacZ neomycin cassette. PTPH1 expression pattern was evaluated by LacZ staining in the brain and PTPH1-KO and WT mice (n = 10 per gender per genotype) were also behaviorally tested for CNS functions.</p> <p>Results</p> <p>In CNS, PTPH1 is expressed during development and in adulthood and mainly localized in hippocampus, thalamus, cortex and cerebellum neurons. The behavioral tests performed on the PTPH1-KO mice showed an impact on working memory in male mice and an impaired learning performance at rotarod in females.</p> <p>Conclusion</p> <p>These results demonstrate for the first time a neuronal expression of PTPH1 and its functionality at the level of cognition.</p

    Acquiring vulnerability indicators to geo-hydrological hazards: An example of mobile phone-based data collection

    Get PDF
    Abstract Geo-hydrological risk reduction is a key issue for local governments in Italy. In this context, a collaboration was undertaken between multiple actors in the La Spezia municipality aimed at: (i) monitoring building characteristics, using specific and valuable indicators, and (ii) increasing the knowledge of geo-hydrological hazards across residents and local land planners (iii) implementing local emergency civil protection plan. An extensive mobile data collection was carried out through apps specifically developed for Android and IOS mobile devices. The digital forms were differentiated on the basis of the potential hazard: one of 46 fields and one of 125 fields designed for buildings respectively located in flood prone areas and in medium to very high landslide susceptibility areas. The digital version of the forms was designed using the Open Data Kit (ODK) and GISCloud client-server approach. All the collected data, including geospatial locations and images, were automatically sent to a central server, stored and organized in a database. Geospatial data-analysis and maps resulted useful in evaluating possible impacts to exposed buildings to potential geo-hydrological processes. The proposed public participation method for data-gathering increased the knowledge across residents providing a better understanding of the urban systems, of the buildings condition and their relation respect to the geo-hydrological risk. The method can be considered as part of the decision support systems for civil protection purposes to better planning geo-hydrological mitigation measures. The application of mobile technology for data collection can be effectively used when local government resources are limited

    MAREA PROJECT : MEDISEH (Mediterranean Sensitive Habitats) specific contract no 2 (SI2.600741)

    Get PDF
    Based on the following Terms of Reference (TOR) of the content of the European Commission DG MARE request Ares (2011)665688: “Compile information supporting the identification and location of nursery areas (juveniles in their first and, if appropriate, second year of life) and spawning aggregations. This information, which is to be collated and archived in formats adequate for GIS rendering, shall refer to all the demersal and small pelagic species in the Mediterranean included in Appendix VII of Council Regulation (EC) No 199/2008 as well as for the species subject to minimum size (Council Regulation (EC) No 1967/2006-Annex III). In addition, ecological characterisation of these areas, both in terms of biological community (assemblage) and habitats therein, must be provided.” The technical tender form of the Specific Contract 2 (MEDISEH) defined the following objectives: Review of historical and current data on the locations and the status of seagrass beds, coralligenous and mĂ€erl beds in different GSAs (Geographical Sub-Areas amending amending the Resolution GFCM/31/2007/2) all over the Mediterranean basin. Transform the information into a digitilized format within the framework of a geodatabase Review and map of all existing specific Marine Protected Areas (MPAs) in the Mediterranean area as well as areas that are under any form of national or international regulation. Identify and map suitable areas for Posidonia, coralligenous and mĂ€erl communities by developing habitat distribution models at different spatial scales. Review and map all existing information on historical and current data of nurseries and spawning grounds of certain small pelagic (i.e., Engraulis encrasicolus, Sardina pilchardus, Scomber spp., Trachurus spp.) and demersal species (i.e., Aristaeomorpha foliacea, Aristeus antennatus, Merluccius merluccius, Mullus barbatus, Mullus surmuletus, Nephrops norvegicus, Parapenaeus longirostris, Pagellus erythrinus, Galeus melastomus, Raja clavata, Illex coindetti, Eledone cirrosa) that are included in the Data Collection Framework for the Mediterranean and subjected to minimum landing size based on Council Regulation No 1967/2006-Annex II. Analyze existing survey data and apply spatial analysis techniques in order to identify locations that are more likely to be density hot spot areas or are being more suitable for fish nurseries and spawning grounds for Engraulis encrasicolus, Sardina pilchardus, Scomber spp., Trachurus trachurus, Aristaeomorpha foliacea, Aristeus antennatus, Merluccius merluccius, Mullus barbatus, Mullus surmuletus, Nephrops norvegicus, Parapenaeus longirostris, Pagellus erythrinus, Galeus melastomus, Raja clavata, Illex coindetti, Eledone cirrosa These areas will also be characterized from an environmental and ecological perspective upon data availability. Integrate and present the aforementioned information through a Web-based GIS viewer with an associated geo-referenced database that will operate as a consulting tool for spatial management and conservation planning. Following the revision of the knowledge base, to identify gaps and suggest future research priorities. In order to meet these objectives, an expert team was composed within the MAREA Consortium from scientists with established expertise in the different topics required, and working in different areas of the Mediterranean basin. The team formed to execute the project includes the main Institutes of EU countries in the Mediterranean, all having solid reputations in the fields covered. The participating Institutes/Entities operate in the Western, Central and Eastern parts of the Mediterranean basin, and this ensures familiarity with the geographical areas that are related to the specific tendering. Moreover, a large number of scientists outside of the MAREA Consortium collaborated on a volunteer basis with data and other input. Details on the list of experts and external collaborators can be found in each Work Package in the present report. For CV details, check the MAREA expert web-site http://www.mareaproject.net/.peer-reviewe

    Seagrass meadows (Posidonia oceanica) distribution and trajectories of change.

    Get PDF
    Posidonia oceanica meadows are declining at alarming rates due to climate change and human activities. Although P. oceanica is considered the most important and well-studied seagrass species of the Mediterranean Sea, to date there has been a limited effort to combine all the spatial information available and provide a complete distribution of meadows across the basin. The aim of this work is to provide a fine-scale assessment of (i) the current and historical known distribution of P. oceanica, (ii) the total area of meadows and (iii) the magnitude of regressive phenomena in the last decades. The outcomes showed the current spatial distribution of P. oceanica, covering a known area of 1,224,707 ha, and highlighted the lack of relevant data in part of the basin (21,471 linear km of coastline). The estimated regression of meadows amounted to 34% in the last 50 years, showing that this generalised phenomenon had to be mainly ascribed to cumulative effects of multiple local stressors. Our results highlighted the importance of enforcing surveys to assess the status and prioritize areas where cost-effective schemes for threats reduction, capable of reversing present patterns of change and ensuring P. oceanica persistence at Mediterranean scale, could be implemented.This study was supported and financed by the Commission of the European Union (DG MARE) within the MAREA Framework contract (Call for tenders MARE/2009/05_Lot1) through the Specific Project MEDISEH (SI2.600741): Mediterranean Sensitive Habitats, that received 568.996 euro. The opinions expressed are those of the authors of the study only and do not represent the Commission’s official position. The European Commission is thankfully acknowledged.This is the final version of the article. It first appeared from NPG via http://dx.doi.org/10.1038/srep1250

    Assessment of genetically modified oilseed rape GT73 for renewal authorisation under Regulation (EC) No 1829/2003 (application EFSA‐GMO‐RX‐002)

    Full text link
    Following the submission of application EFSA-GMO-RX-002 under Regulation (EC) No 1829/2003 from Monsanto Company, the Panel on Genetically Modified Organisms of EFSA (GMO) was asked to deliver a scientific risk assessment on the data submitted in the context of the renewal of authorisation application for the herbicide-tolerant genetically modified oilseed rape GT73. The data received in the context of this renewal application contained post-market environmental monitoring reports, a systematic search and evaluation of literature, updated bioinformatic analyses and additional documents or studies performed by or on behalf of the applicant. The GMO Panel assessed these data for possible new hazards, modified exposure or new scientific uncertainties identified during the authorisation period and not previously assessed in the context of the original application. Under the assumption that the DNA sequence of the event in oilseed rape GT73 considered for renewal of authorisation is identical to the sequence of the originally assessed event, the GMO Panel concludes that there is no evidence in renewal application EFSA-GMO-RX-002 for new hazards, modified exposure or scientific uncertainties that would change the conclusions of the original risk assessment on oilseed rape GT73

    Assessment of genetically modified maize MON 89034 for renewal authorisation under Regulation (EC) No 1829/2003 (application EFSA-GMO-RX-015)

    Get PDF
    Following the submission of application EFSA-GMO-RX-015 under Regulation (EC) No 1829/2003 from Bayer Agriculture BVBA, the EFSA Panel on Genetically Modified Organisms (GMO Panel) was asked to deliver a scientific risk assessment on the data submitted in the context of the renewal of authorisation application for the insect-resistant genetically modified maize MON 89034, for food and feed uses, excluding cultivation within the EU. The data received in the context of this renewal application contained post-market environmental monitoring reports, a systematic search and evaluation of literature, updated bioinformatic analyses and additional documents or studies performed by or on behalf of the applicant. The GMO Panel assessed these data for possible new hazards, modified exposure or new scientific uncertainties identified during the authorisation period and not previously assessed in the context of the original application. Under the assumption that the DNA sequence of the event in maize MON 89034 considered for renewal is identical to the sequence of the originally assessed event, the GMO Panel concludes that there is no evidence in renewal application EFSA-GMO-RX-015 for new hazards, modified exposure or scientific uncertainties that would change the conclusions of the original risk assessment on maize MON 89034

    Assessment of genetically modified maize Bt11 for renewal authorisation under Regulation (EC) No 1829/2003 (application EFSA-GMO-RX-016).

    Get PDF
    Following the submission of application EFSA-GMO-RX-016 under Regulation (EC) No 1829/2003 from Syngenta the Panel on Genetically Modified Organisms of the European Food Safety Authority was asked to deliver a scientific risk assessment on the data submitted in the context of the renewal of authorisation application for the insect-resistant and herbicide-tolerant genetically modified maize Bt11, for food and feed uses, excluding cultivation within the European Union. The data received in the context of this renewal application contained post-market environmental monitoring reports, a systematic search and evaluation of literature, updated bioinformatic analyses, and additional documents or studies performed by or on behalf of the applicant. The GMO Panel assessed these data for possible new hazards, modified exposure or new scientific uncertainties identified during the authorisation period and not previously assessed in the context of the original application. Under the assumption that the DNA sequences of the event in maize Bt11 considered for renewal is identical to the sequence of the originally assessed events, the GMO Panel concludes that there is no evidence in renewal application EFSA-GMO-RX-016 for new hazards, modified exposure or scientific uncertainties that would change the conclusions of the original risk assessment on maize Bt11

    Assessment of genetically modified maize MON 89034 × 1507 × MON 88017 × 59122 × DAS‐40278‐9 and subcombinations independently of their origin for food and feed uses, import and processing under Regulation (EC) No 1829/2003 (application EFSA‐GMO‐NL‐2013‐113)

    Get PDF
    Maize MON 89034 × 1507 × MON 88017 × 59122 × DAS‐40278‐9 (five‐event stack maize) was produced by conventional crossing to combine five single events: MON 89034, 1507, MON 88017, 59122 and DAS‐40278‐9. The GMO Panel previously assessed the 5 single maize events and 11 of their subcombinations and did not identify safety concerns. No new data on the single maize events or their 11 subcombinations that could modify the original conclusions on their safety were identified. The molecular characterisation, comparative analysis (agronomic, phenotypic and compositional characteristics) and the outcome of the toxicological, allergenicity and nutritional assessment indicates that the combination of the single maize events and of the newly expressed proteins in the five‐event stack maize does not give rise to food and feed safety and nutritional concerns. The GMO Panel concludes that the five‐event stack maize, as described in this application, is as safe as and nutritionally equivalent to its non‐GM comparator and the non‐GM reference varieties tested. In the case of accidental release of the five‐event stack maize into the environment, this would not raise environmental safety concerns. The GMO Panel assessed the likelihood of interactions among the single events in the 14 maize subcombinations for which no experimental data were provided, and concludes that they are expected to be as safe as and nutritionally equivalent to the single events, the previously assessed subcombinations and the five‐event stack maize. The post‐market environmental monitoring plan and reporting intervals are in line with the intended uses of the five‐event stack maize. No post‐market monitoring of food/feed is considered necessary. The GMO Panel concludes that the five‐event stack maize and its subcombinations are as safe as its non‐GM comparator and the tested non‐GM reference varieties with respect to potential effects on human and animal health and the environment
    • 

    corecore