281 research outputs found

    The effective Lagrangian of dark energy from observations

    Get PDF
    Using observational data on the expansion rate of the universe (H(z)) we constrain the effective Lagrangian of the current accelerated expansion. Our results show that the effective potential is consistent with being flat i.e., a cosmological constant; it is also consistent with the field moving along an almost flat potential like a pseudo-Goldstone boson. We show that the potential of dark energy does not deviate from a constant at more than 6% over the redshift range 0 < z < 1. The data can be described by just a constant term in the Lagrangian and do not require any extra parameters; therefore there is no evidence for augmenting the number of parameters of the LCDM paradigm. We also find that the data justify the effective theory approach to describe accelerated expansion and that the allowed parameters range satisfy the expected hierarchy. Future data, both from cosmic chronometers and baryonic acoustic oscillations, that can measure H(z) at the % level, could greatly improve constraints on the flatness of the potential or shed some light on possible mechanisms driving the accelerated expansion. Besides the above result, it is shown that the effective Lagrangian of accelerated expansion can be constrained from cosmological observations in a model-independent way and that direct measurements of the expansion rate H(z) are most useful to do so.Comment: 9 pages, 3 figures, JCAP submitted. This paper presents a reconstruction of the dark energy potential. It is a companion to Moresco et al. 2012a, which presents new H(z) results and Moresco et al. 2012b, which provides cosmological parameter constraint

    Morita Duality and Noncommutative Wilson Loops in Two Dimensions

    Full text link
    We describe a combinatorial approach to the analysis of the shape and orientation dependence of Wilson loop observables on two-dimensional noncommutative tori. Morita equivalence is used to map the computation of loop correlators onto the combinatorics of non-planar graphs. Several nonperturbative examples of symmetry breaking under area-preserving diffeomorphisms are thereby presented. Analytic expressions for correlators of Wilson loops with infinite winding number are also derived and shown to agree with results from ordinary Yang-Mills theory.Comment: 32 pages, 9 figures; v2: clarifying comments added; Final version to be published in JHE

    Two-dimensional hole precession in an all-semiconductor spin field effect transistor

    Get PDF
    We present a theoretical study of a spin field-effect transistor realized in a quantum well formed in a p--doped ferromagnetic-semiconductor- nonmagnetic-semiconductor-ferromagnetic-semiconductor hybrid structure. Based on an envelope-function approach for the hole bands in the various regions of the transistor, we derive the complete theory of coherent transport through the device, which includes both heavy- and light-hole subbands, proper modeling of the mode matching at interfaces, integration over injection angles, Rashba spin precession, interference effects due to multiple reflections, and gate-voltage dependences. Numerical results for the device current as a function of externally tunable parameters are in excellent agreement with approximate analytical formulae.Comment: 9 pages, 11 figure

    A quantum Monte Carlo study of the one-dimensional ionic Hubbard model

    Full text link
    Quantum Monte Carlo methods are used to study a quantum phase transition in a 1D Hubbard model with a staggered ionic potential (D). Using recently formulated methods, the electronic polarization and localization are determined directly from the correlated ground state wavefunction and compared to results of previous work using exact diagonalization and Hartree-Fock. We find that the model undergoes a thermodynamic transition from a band insulator (BI) to a broken-symmetry bond ordered (BO) phase as the ratio of U/D is increased. Since it is known that at D = 0 the usual Hubbard model is a Mott insulator (MI) with no long-range order, we have searched for a second transition to this state by (i) increasing U at fixed ionic potential (D) and (ii) decreasing D at fixed U. We find no transition from the BO to MI state, and we propose that the MI state in 1D is unstable to bond ordering under the addition of any finite ionic potential. In real 1D systems the symmetric MI phase is never stable and the transition is from a symmetric BI phase to a dimerized BO phase, with a metallic point at the transition

    Ferric carboxymaltose infusion versus oral iron supplementation for preoperative iron deficiency anaemia in patients with colorectal cancer (FIT):a multicentre, open-label, randomised, controlled trial

    Get PDF
    Background: A third of patients with colorectal cancer who are eligible for surgery in high-income countries have concomitant anaemia associated with adverse outcomes. We aimed to compare the efficacy of preoperative intravenous and oral iron supplementation in patients with colorectal cancer and iron deficiency anaemia. Methods: In the FIT multicentre, open-label, randomised, controlled trial, adult patients (aged 18 years or older) with M0 stage colorectal cancer scheduled for elective curative resection and iron deficiency anaemia (defined as haemoglobin level of less than 7·5 mmol/L (12 g/dL) for women and less than 8 mmol/L (13 g/dL) for men, and a transferrin saturation of less than 20%) were randomly assigned to either 1–2 g of ferric carboxymaltose intravenously or three tablets of 200 mg of oral ferrous fumarate daily. The primary endpoint was the proportion of patients with normalised haemoglobin levels before surgery (≥12 g/dL for women and ≥13 g/dL for men). An intention-to-treat analysis was done for the primary analysis. Safety was analysed in all patients who received treatment. The trial was registered at ClincalTrials.gov, NCT02243735, and has completed recruitment. Findings: Between Oct 31, 2014, and Feb 23, 2021, 202 patients were included and assigned to intravenous (n=96) or oral (n=106) iron treatment. Treatment began a median of 14 days (IQR 11–22) before surgery for intravenous iron and 19 days (IQR 13–27) for oral iron. Normalisation of haemoglobin at day of admission was reached in 14 (17%) of 84 patients treated intravenously and 15 (16%) of 97 patients treated orally (relative risk [RR] 1·08 [95% CI 0·55–2·10]; p=0·83), but the proportion of patients with normalised haemoglobin significantly increased for the intravenous treatment group at later timepoints (49 [60%] of 82 vs 18 [21%] of 88 at 30 days; RR 2·92 [95% CI 1·87–4·58]; p&lt;0·0001). The most prevalent treatment-related adverse event was discoloured faeces (grade 1) after oral iron treatment (14 [13%] of 105), and no treatment-related serious adverse events or deaths were observed in either group. No differences in other safety outcomes were seen, and the most common serious adverse events were anastomotic leakage (11 [5%] of 202), aspiration pneumonia (5 [2%] of 202), and intra-abdominal abscess (5 [2%] 202). Interpretation: Normalisation of haemoglobin before surgery was infrequent with both treatment regimens, but significantly improved at all other timepoints following intravenous iron treatment. Restoration of iron stores was feasible only with intravenous iron. In selected patients, surgery might be delayed to augment the effect of intravenous iron on haemoglobin normalisation. Funding: Vifor Pharma.</p
    corecore