4 research outputs found

    Time course of risk factors associated with mortality of 1260 critically ill patients with COVID-19 admitted to 24 Italian intensive care units

    Get PDF
    Purpose: To evaluate the daily values and trends over time of relevant clinical, ventilatory and laboratory parameters during the intensive care unit (ICU) stay and their association with outcome in critically ill patients with coronavirus disease 19 (COVID-19). Methods: In this retrospective–prospective multicentric study, we enrolled COVID-19 patients admitted to Italian ICUs from February 22 to May 31, 2020. Clinical data were daily recorded. The time course of 18 clinical parameters was evaluated by a polynomial maximum likelihood multilevel linear regression model, while a full joint modeling was fit to study the association with ICU outcome. Results: 1260 consecutive critically ill patients with COVID-19 admitted in 24 ICUs were enrolled. 78% were male with a median age of 63 [55–69] years. At ICU admission, the median ratio of arterial oxygen partial pressure to fractional inspired oxygen (PaO2/FiO2) was 122 [89–175] mmHg. 79% of patients underwent invasive mechanical ventilation. The overall mortality was 34%. Both the daily values and trends of respiratory system compliance, PaO2/FiO2, driving pressure, arterial carbon dioxide partial pressure, creatinine, C-reactive protein, ferritin, neutrophil, neutrophil–lymphocyte ratio, and platelets were associated with survival, while for lactate, pH, bilirubin, lymphocyte, and urea only the daily values were associated with survival. The trends of PaO2/FiO2, respiratory system compliance, driving pressure, creatinine, ferritin, and C-reactive protein showed a higher association with survival compared to the daily values. Conclusion: Daily values or trends over time of parameters associated with acute organ dysfunction, acid–base derangement, coagulation impairment, or systemic inflammation were associated with patient survival

    Bone Morphogenetic Protein/SMAD Signaling Orients Cell Fate Decision by Impairing KSRP-Dependent MicroRNA Maturation

    Get PDF
    MicroRNAs (miRNAs) are essential regulators of development, physiology, and evolution, and their biogenesis is strictly controlled at multiple levels. Regulatory proteins, such as KSRP, modulate rates and timing of enzymatic reactions responsible for maturation of select miRNAs from their primary transcripts in response to specific stimuli. Here, we show that KSRP silencing in mesenchymal C2C12 cells produces a change in the transcriptome largely overlapping that induced by bone morphogenetic protein 2 (BMP2) signaling activation. This induces osteoblastic differentiation while preventing myogenic differentiation. KSRP silencing- and BMP2-dependent myogenic miRNA (myomiR) maturation blockade is required for osteoblastic differentiation of C2C12 cells. Our results demonstrate that phosphorylated R-SMAD proteins, the transducers of BMP2 signal, associate with phosphorylated KSRP and block its interaction with primary myomiRs. This abrogates KSRP-dependent myomiR maturation, with SMAD4, SMAD5, and SMAD9 silencing being able to rescue KSRP function. Thus, SMAD-induced blockade of KSRP-dependent myomiR maturation is critical for orienting C2C12 cell differentiation toward osteoblastic lineage

    Tocilizumab for patients with COVID-19 pneumonia. The single-arm TOCIVID-19 prospective trial

    No full text
    BackgroundTocilizumab blocks pro-inflammatory activity of interleukin-6 (IL-6), involved in pathogenesis of pneumonia the most frequent cause of death in COVID-19 patients.MethodsA multicenter, single-arm, hypothesis-driven trial was planned, according to a phase 2 design, to study the effect of tocilizumab on lethality rates at 14 and 30 days (co-primary endpoints, a priori expected rates being 20 and 35%, respectively). A further prospective cohort of patients, consecutively enrolled after the first cohort was accomplished, was used as a secondary validation dataset. The two cohorts were evaluated jointly in an exploratory multivariable logistic regression model to assess prognostic variables on survival.ResultsIn the primary intention-to-treat (ITT) phase 2 population, 180/301 (59.8%) subjects received tocilizumab, and 67 deaths were observed overall. Lethality rates were equal to 18.4% (97.5% CI: 13.6-24.0, P=0.52) and 22.4% (97.5% CI: 17.2-28.3, P<0.001) at 14 and 30 days, respectively. Lethality rates were lower in the validation dataset, that included 920 patients. No signal of specific drug toxicity was reported. In the exploratory multivariable logistic regression analysis, older age and lower PaO2/FiO2 ratio negatively affected survival, while the concurrent use of steroids was associated with greater survival. A statistically significant interaction was found between tocilizumab and respiratory support, suggesting that tocilizumab might be more effective in patients not requiring mechanical respiratory support at baseline.ConclusionsTocilizumab reduced lethality rate at 30 days compared with null hypothesis, without significant toxicity. Possibly, this effect could be limited to patients not requiring mechanical respiratory support at baseline.Registration EudraCT (2020-001110-38); clinicaltrials.gov (NCT04317092)

    Correction to: Tocilizumab for patients with COVID-19 pneumonia. The single-arm TOCIVID-19 prospective trial

    No full text
    corecore