24 research outputs found

    Second-Generation Dendrimers with Chondroitin Sulfate Type-E Disaccharides as Multivalent Ligands for Langerin

    No full text
    International audienceChondroitin sulfate type-E (CS-E) is a sulfated polysaccharide that shows several interesting biological activities, such as modulation of the neuronal growth factor signaling and its interaction with langerin, a C-type lectin with a crucial role in the immunological system. However, applications of CS-E are hampered by the typical heterogeneous structure of the natural polysaccharide. Well-defined, homogeneous CS-E analogues are highly demanded. Here, we report the synthesis of monodispersed, structurally well-defined second-generation glycodendrimers displaying up to 18 CS-E disaccharide units. These complex multivalent systems have a molecular weight and a number of disaccharide repeating units comparable with those of the natural polysaccharides. In addition, surface plasmon resonance experiments revealed a calcium-independent interaction between these glycodendrimers and langerin, in the micromolar range, highlighting the utility of these compounds as CS-E mimetics

    Glycosaminoglycans are interactants of Langerin: comparison with gp120 highlights an unexpected calcium-independent binding mode.

    Get PDF
    Langerin is a C-type lectin specifically expressed in Langerhans cells. As recently shown for HIV, Langerin is thought to capture pathogens and mediate their internalisation into Birbeck Granules for elimination. However, the precise functions of Langerin remain elusive, mostly because of the lack of information on its binding properties and physiological ligands. Based on recent reports that Langerin binds to sulfated sugars, we conducted here a comparative analysis of Langerin interaction with mannose-rich HIV glycoprotein gp120 and glycosaminoglycan (GAGs), a family of sulfated polysaccharides expressed at the surface of most mammalian cells. Our results first revealed that Langerin bound to these different glycans through very distinct mechanisms and led to the identification of a novel, GAG-specific binding mode within Langerin. In contrast to the canonical lectin domain, this new binding site showed no Ca(2+)-dependency, and could only be detected in entire, trimeric extracellular domains of Langerin. Interestingly binding to GAGs, did not simply rely on a net charge effect, but rather on more discrete saccharide features, such as 6-O-sulfation, or iduronic acid content. Using molecular modelling simulations, we proposed a model of Langerin/heparin complex, which located the GAG binding site at the interface of two of the three Carbohydrate-recognition domains of the protein, at the edge of the a-helix coiled-coil. To our knowledge, the binding properties that we have highlighted here for Langerin, have never been reported for C-type lectins before. These findings provide new insights towards the understanding of Langerin biological functions

    L'hydrologie tropicale : géosciences et outil pour le développement : mélanges à la mémoire de Jean Rodier

    No full text
    Le logiciel Cheiamaz a été développé pour prévoir l'évolution de la crue à Manaus, sur la base d'une modélisation de type statistique des séries chronologiques de cotes observées aux principales stations brésiliennes du bassin de l'Amazone. Des équations de prévision ont été établies pour des échéances variant de 10 à 60 jours, par une méthode de régression progressive ascendante, couplée à une procédure d'élimination graduelle descendante des variables à envisager compte-tenu des lacunes que comportent les séries de données. Les écarts quadratiques moyens, en calage et en validation, varient de moins de 10 cm pour le délai de 10 jours, à environ 40 cm pour celui de 60 jours. Une méthode neuronale a d'autre part été testée pour prévoir la cote maximale de la crue. Le logiciel Cheiamaz permet enfin de comparer a posteriori les prévisions émises antérieurement avec les données effectivement observées. (Résumé d'auteur

    Chemo‐Enzymatic Synthesis of S. mansoni O‐Glycans and Their Evaluation as Ligands for C‐Type Lectin Receptors MGL, DC‐SIGN, and DC‐SIGNR

    No full text
    International audienceDue to their interactions with C-type lectin receptors (CLRs), glycans from the helminth Schistosoma mansoni represent promising leads for treatment of autoimmune diseases, allergies or cancer. We chemo-enzymatically synthesized nine O-glycans based on the two predominant O-glycan cores observed in the infectious stages of schistosomiasis, the mucin core 2 and the S. mansoni core. The O-glycans were fucosylated next to a selection of N-glycans directly on a microarray slide using a recombinant fucosyltransferase and GDP-fucose or GDP-6-azidofucose as donor. Binding assays with fluorescently labelled human CLRs DC-SIGN, DC-SIGNR and MGL revealed the novel O-glycan O8 as the best ligand for MGL from our panel. Significant binding to DC-SIGN was also found for azido-fucosylated glycans. Contrasting binding specificities were observed between the monovalent carbohydrate recognition domain (CRD) and the tetravalent extracellular domain (ECD) of DC-SIGNR

    X-ray structure and enzymatic study of a bacterial NADPH oxidase highlight the activation mechanism of eukaryotic NOX

    No full text
    International audienceNADPH oxidases (NOX) are transmembrane proteins, widely spread in eukaryotes and prokaryotes, that produce reactive oxygen species (ROS). Eukaryotes use the ROS products for innate immune defense and signaling in critical (patho)physiological processes. Despite the recent structures of human NOX isoforms, the activation of electron transfer remains incompletely understood. SpNOX, a homolog from Streptococcus pneumoniae , can serves as a robust model for exploring electron transfers in the NOX family thanks to its constitutive activity. Crystal structures of SpNOX full-length and dehydrogenase (DH) domain constructs are revealed here. The isolated DH domain acts as a flavin reductase, and both constructs use either NADPH or NADH as substrate. Our findings suggest that hydride transfer from NAD(P)H to FAD is the rate-limiting step in electron transfer. We identify significance of F397 in nicotinamide access to flavin isoalloxazine and confirm flavin binding contributions from both DH and Transmembrane (TM) domains. Comparison with related enzymes suggests that distal access to heme may influence the final electron acceptor, while the relative position of DH and TM does not necessarily correlate with activity, contrary to previous suggestions. It rather suggests requirement of an internal rearrangement, within the DH domain, to switch from a resting to an active state. Thus, SpNOX appears to be a good model of active NOX2, which allows us to propose an explanation for NOX2’s requirement for activation

    Lipid bilayer degradation induced by SARS-CoV-2 spike protein as revealed by neutron reflectometry

    No full text
    International audienceAbstract SARS-CoV-2 spike proteins are responsible for the membrane fusion event, which allows the virus to enter the host cell and cause infection. This process starts with the binding of the spike extramembrane domain to the angiotensin-converting enzyme 2 (ACE2), a membrane receptor highly abundant in the lungs. In this study, the extramembrane domain of SARS-CoV-2 Spike (sSpike) was injected on model membranes formed by supported lipid bilayers in presence and absence of the soluble part of receptor ACE2 (sACE2), and the structural features were studied at sub-nanometer level by neutron reflection. In all cases the presence of the protein produced a remarkable degradation of the lipid bilayer. Indeed, both for membranes from synthetic and natural lipids, a significant reduction of the surface coverage was observed. Quartz crystal microbalance measurements showed that lipid extraction starts immediately after sSpike protein injection. All measurements indicate that the presence of proteins induces the removal of membrane lipids, both in the presence and in the absence of ACE2, suggesting that sSpike molecules strongly associate with lipids, and strip them away from the bilayer, via a non-specific interaction. A cooperative effect of sACE2 and sSpike on lipid extraction was also observed

    Disaccharide analysis of GAGs.

    No full text
    <p>For determination of GAG composition, heparin and CS samples were exhaustively depolymerised (with heparinases I, II, III and chondroitinase ABC, respectively), and the resulting disaccharides were resolved by SAX-HPLC, using a NaCl gradient calibrated with authentic standards.</p

    Langerin ECD interaction onto heparin.

    No full text
    <p>Surface was functionalized with heparin 6 kDa. 100 µL Langerin ECD at 500 nM are injected onto the surface in a Ca<sup>2+</sup> containing running buffer. Two modes of surface regenerations are tested, 1: Injection of 30 µL of 50 mM EDTA. 2: Injection of 50 µL of 350 mM MgCl<sub>2</sub>.</p
    corecore