20,478 research outputs found

    Tube formulas and complex dimensions of self-similar tilings

    Full text link
    We use the self-similar tilings constructed by the second author in "Canonical self-affine tilings by iterated function systems" to define a generating function for the geometry of a self-similar set in Euclidean space. This tubular zeta function encodes scaling and curvature properties related to the complement of the fractal set, and the associated system of mappings. This allows one to obtain the complex dimensions of the self-similar tiling as the poles of the tubular zeta function and hence develop a tube formula for self-similar tilings in \Rd\mathbb{R}^d. The resulting power series in ϵ\epsilon is a fractal extension of Steiner's classical tube formula for convex bodies K \ci \bRd. Our sum has coefficients related to the curvatures of the tiling, and contains terms for each integer i=0,1,...,d−1i=0,1,...,d-1, just as Steiner's does. However, our formula also contains terms for each complex dimension. This provides further justification for the term "complex dimension". It also extends several aspects of the theory of fractal strings to higher dimensions and sheds new light on the tube formula for fractals strings obtained in "Fractal Geometry and Complex Dimensions" by the first author and Machiel van Frankenhuijsen.Comment: 41 pages, 6 figures, incorporates referee comments and references to new result

    Clumpy Disc and Bulge Formation

    Get PDF
    We present a set of hydrodynamical/Nbody controlled simulations of isolated gas rich galaxies that self-consistently include SN feedback and a detailed chemical evolution model, both tested in cosmological simulations. The initial conditions are motivated by the observed star forming galaxies at z ~ 2-3. We find that the presence of a multiphase interstellar media in our models promotes the growth of disc instability favouring the formation of clumps which in general, are not easily disrupted on timescales compared to the migration time. We show that stellar clumps migrate towards the central region and contribute to form a classical-like bulge with a Sersic index, n > 2. Our physically-motivated Supernova feedback has a mild influence on clump survival and evolution, partially limiting the mass growth of clumps as the energy released per Supernova event is increased, with the consequent flattening of the bulge profile. This regulation does not prevent the building of a classical-like bulge even for the most energetic feedback tested. Our Supernova feedback model is able to establish a self-regulated star formation, producing mass-loaded outflows and stellar age spreads comparable to observations. We find that the bulge formation by clumps may coexit with other channels of bulge assembly such as bar and mergers. Our results suggest that galactic bulges could be interpreted as composite systems with structural components and stellar populations storing archaeological information of the dynamical history of their galaxy.Comment: Accepted for publication in MNRAS - Aug. 20, 201

    Minkowski measurability results for self-similar tilings and fractals with monophase generators

    Get PDF
    In a previous paper [arXiv:1006.3807], the authors obtained tube formulas for certain fractals under rather general conditions. Based on these formulas, we give here a characterization of Minkowski measurability of a certain class of self-similar tilings and self-similar sets. Under appropriate hypotheses, self-similar tilings with simple generators (more precisely, monophase generators) are shown to be Minkowski measurable if and only if the associated scaling zeta function is of nonlattice type. Under a natural geometric condition on the tiling, the result is transferred to the associated self-similar set (i.e., the fractal itself). Also, the latter is shown to be Minkowski measurable if and only if the associated scaling zeta function is of nonlattice type.Comment: 18 pages, 1 figur

    Pointwise tube formulas for fractal sprays and self-similar tilings with arbitrary generators

    Get PDF
    In a previous paper by the first two authors, a tube formula for fractal sprays was obtained which also applies to a certain class of self-similar fractals. The proof of this formula uses distributional techniques and requires fairly strong conditions on the geometry of the tiling (specifically, the inner tube formula for each generator of the fractal spray is required to be polynomial). Now we extend and strengthen the tube formula by removing the conditions on the geometry of the generators, and also by giving a proof which holds pointwise, rather than distributionally. Hence, our results for fractal sprays extend to higher dimensions the pointwise tube formula for (1-dimensional) fractal strings obtained earlier by Lapidus and van Frankenhuijsen. Our pointwise tube formulas are expressed as a sum of the residues of the "tubular zeta function" of the fractal spray in Rd\mathbb{R}^d. This sum ranges over the complex dimensions of the spray, that is, over the poles of the geometric zeta function of the underlying fractal string and the integers 0,1,...,d0,1,...,d. The resulting "fractal tube formulas" are applied to the important special case of self-similar tilings, but are also illustrated in other geometrically natural situations. Our tube formulas may also be seen as fractal analogues of the classical Steiner formula.Comment: 43 pages, 13 figures. To appear: Advances in Mathematic

    Geometric invariance of mass-like asymptotic invariants

    Full text link
    We study coordinate-invariance of some asymptotic invariants such as the ADM mass or the Chru\'sciel-Herzlich momentum, given by an integral over a "boundary at infinity". When changing the coordinates at infinity, some terms in the change of integrand do not decay fast enough to have a vanishing integral at infinity; but they may be gathered in a divergence, thus having vanishing integral over any closed hypersurface. This fact could only be checked after direct calculation (and was called a "curious cancellation"). We give a conceptual explanation thereof.Comment: 13 page

    Effects of Hyperbolic Rotation in Minkowski Space on the Modeling of Plasma Accelerators in a Lorentz Boosted Frame

    Full text link
    Laser driven plasma accelerators promise much shorter particle accelerators but their development requires detailed simulations that challenge or exceed current capabilities. We report the first direct simulations of stages up to 1 TeV from simulations using a Lorentz boosted calculation frame resulting in a million times speedup, thanks to a frame boost as high as gamma=1300. Effects of the hyperbolic rotation in Minkowski space resulting from the frame boost on the laser propagation in the plasma is shown to be key in the mitigation of a numerical instability that was limiting previous attempts

    Observation of noise correlated by the Hawking effect in a water tank

    Get PDF
    We measured the power spectrum and two-point correlation function for the randomly fluctuating free surface on the downstream side of a stationary flow with a maximum Froude number Fmax≈0.85F_{\rm max} \approx 0.85 reached above a localised obstacle. On such a flow the scattering of incident long wavelength modes is analogous to that responsible for black hole radiation (the Hawking effect). Our measurements of the noise show a clear correlation between pairs of modes of opposite energies. We also measure the scattering coefficients by applying the same analysis of correlations to waves produced by a wave maker.Comment: 11 pages, 14 figures. several points clarified; two new subsections in the Supplemental Material on the wave equation and the links with experiments in BEC
    • …
    corecore