20,094 research outputs found

    Proca equations derived from first principles

    Full text link
    Gersten has shown how Maxwell equations can be derived from first principles, similar to those which have been used to obtain the Dirac relativistic electron equation. We show how Proca equations can be also deduced from first principles, similar to those which have been used to find Dirac and Maxwell equations. Contrary to Maxwell equations, it is necessary to introduce a potential in order to transform a second order differential equation, as the Klein-Gordon equation, into a first order differential equation, like Proca equations.Comment: 6 page

    Metallicity of high stellar mass galaxies with signs of merger events

    Get PDF
    We focus on an analysis of galaxies of high stellar mass and low metallicity. We cross-correlated the Millenium Galaxy Catalogue (MGC) and the Sloan Digital Sky Survey (SDSS) galaxy catalogue to provide a sample of MGC objects with high resolution imaging and both spectroscopic and photometric information available in the SDSS database. For each galaxy in our sample, we conducted a systematic morphological analysis by visual inspection of MGC images using their luminosity contours. The galaxies are classified as either disturbed or undisturbed objects. We divide the sample into three metallicity regions, within wich we compare the properties of disturbed and undisturbed objects. We find that the fraction of galaxies that are strongly disturbed, indicative of being merger remnants, is higher when lower metallicity objects are considered. The three bins analysed consist of approximatively 15%, 20%, and 50% disturbed galaxies (for high, medium, and low metallicity, respectively). Moreover, the ratio of the disturbed to undisturbed relative distributions of the population age indicator, Dn(4000), in the low metallicity bin, indicates that the disturbed objects have substantially younger stellar populations than their undisturbed counterparts. In addition, we find that an analysis of colour distributions provides similar results, showing that low metallicity galaxies with a disturbed morphology are bluer than those that are undisturbed. The bluer colours and younger populations of the low metallicity, morphologically disturbed objects suggest that they have experienced a recent merger with an associated enhanced star formation rate. [abridged]Comment: Astronomy & Astrophysics, in pres

    Inert states of spin-S systems

    Full text link
    We present a simple but efficient geometrical method for determining the inert states of spin-S systems. It can be used if the system is described by a spin vector of a spin-S particle and its energy is invariant in spin rotations and phase changes. Our method is applicable to an arbitrary S and it is based on the representation of a pure spin state of a spin-S particle in terms of 2S points on the surface of a sphere. We use this method to find candidates for some of the ground states of spinor Bose-Einstein condensates.Comment: 4 pages, 2 figures, minor changes, references added, typos correcte

    Effects of Hyperbolic Rotation in Minkowski Space on the Modeling of Plasma Accelerators in a Lorentz Boosted Frame

    Full text link
    Laser driven plasma accelerators promise much shorter particle accelerators but their development requires detailed simulations that challenge or exceed current capabilities. We report the first direct simulations of stages up to 1 TeV from simulations using a Lorentz boosted calculation frame resulting in a million times speedup, thanks to a frame boost as high as gamma=1300. Effects of the hyperbolic rotation in Minkowski space resulting from the frame boost on the laser propagation in the plasma is shown to be key in the mitigation of a numerical instability that was limiting previous attempts

    Entropy-driven formation of the gyroid cubic phase

    Get PDF
    We show, by computer simulation, that tapered or pear-shaped particles, interacting through purely repulsive interactions, can freely self-assemble to form the three-dimensionally periodic, gyroid cubic phase. The Ia3d gyroid cubic phase is formed by these particles both on compression of an isotropic configuration and on expansion of a smectic A bilayer arrangement. For the latter case, it is possible identify the steps by which the topological transformation from non-intersecting planes to fully interpenetrating, periodic networks takes place</p

    Modeling laser wakefield accelerators in a Lorentz boosted frame

    Get PDF
    Modeling of laser-plasma wakefield accelerators in an optimal frame of reference \cite{VayPRL07} is shown to produce orders of magnitude speed-up of calculations from first principles. Obtaining these speedups requires mitigation of a high-frequency instability that otherwise limits effectiveness in addition to solutions for handling data input and output in a relativistically boosted frame of reference. The observed high-frequency instability is mitigated using methods including an electromagnetic solver with tunable coefficients, its extension to accomodate Perfectly Matched Layers and Friedman's damping algorithms, as well as an efficient large bandwidth digital filter. It is shown that choosing the frame of the wake as the frame of reference allows for higher levels of filtering and damping than is possible in other frames for the same accuracy. Detailed testing also revealed serendipitously the existence of a singular time step at which the instability level is minimized, independently of numerical dispersion, thus indicating that the observed instability may not be due primarily to Numerical Cerenkov as has been conjectured. The techniques developed for Cerenkov mitigation prove nonetheless to be very efficient at controlling the instability. Using these techniques, agreement at the percentage level is demonstrated between simulations using different frames of reference, with speedups reaching two orders of magnitude for a 0.1 GeV class stages. The method then allows direct and efficient full-scale modeling of deeply depleted laser-plasma stages of 10 GeV-1 TeV for the first time, verifying the scaling of plasma accelerators to very high energies. Over 4, 5 and 6 orders of magnitude speedup is achieved for the modeling of 10 GeV, 100 GeV and 1 TeV class stages, respectively

    Neutron spin polarization in strong magnetic fields

    Full text link
    The effects of strong magnetic fields on the inner crust of neutron stars are investigated after taking into account the anomalous magnetic moments of nucleons. Energy spectra and wave functions for protons and neutrons in a uniform magnetic field are provided. The particle spin polarizations and the yields of protons and neutrons are calculated in a free Fermi gas model. Obvious spin polarization occurs when B1014B\geq10^{14}G for protons and B1017B\geq10^{17}G for neutrons, respectively. It is shown that the neutron spin polarization depends solely on the magnetic field strength.Comment: Replaced by the revised version; 10 pages, including 3 eps figure

    X-ray microanalysis in STEM of short-term physico-chemical reactions at bioactive glass particles / biological fluids interface. Determination of O/Si atomic ratios

    Get PDF
    Short-term physico-chemical reactions at the interface between bioactive glass particles and biological fluids are studied and we focus our attention on the measurements of O/Si atomic ratio. The studied bioactive glass is in the SiO2-Na2O-CaO-P2O5-K2O-Al2O3-MgO system. The elemental analysis is performed at the submicrometer scale by STEM associated with EDXS and EELS. We previously developed an EDXS quantification method based on the ratio method and taking into account local absorption corrections. In this way, we use EELS data to determine, by an iterative process, the local mass thickness which is an essential parameter to correct absorption in EDXS spectra. After different delays of immersion of bioactive glass particles in a simulated biological solution, results show the formation of different surface layers at the bioactive glass periphery. Before one day of immersion, we observe the presence of an already shown (Si,O,Al) rich layer at the periphery. In this paper, we demonstrate that a thin electron dense (Si,O) layer is formed on top of the (Si,O,Al) layer. In this (Si,O) layer, depleted in aluminium, we point out an increase of oxygen weight concentration which can be interpreted by the presence of Si(OH)4 groups, that permit the formation of a (Ca,P) layer. Aluminium plays a role in the glass solubility and may inhibit apatite nucleation. After the beginning of the (Ca,P) layer formation, the size of the electron dense (Si,O) layer decreases and tends to disappear. After two days of immersion, the (Ca,P) layer grows in thickness and leads to apatite precipitatio
    corecore