7 research outputs found

    EF-hand protein Ca²⁺ buffers regulate Ca²⁺ influx and exocytosis in sensory hair cells

    Get PDF
    EF-hand Ca²⁺-binding proteins are thought to shape the spatiotemporal properties of cellular Ca²⁺ signaling and are prominently expressed in sensory hair cells in the ear. Here, we combined genetic disruption of parvalbumin-α, calbindin-D28k, and calretinin in mice with patch-clamp recording, in vivo physiology, and mathematical modeling to study their role in Ca²⁺ signaling, exocytosis, and sound encoding at the synapses of inner hair cells (IHCs). IHCs lacking all three proteins showed excessive exocytosis during prolonged depolarizations, despite enhanced Ca²⁺-dependent inactivation of their Ca²⁺ current. Exocytosis of readily releasable vesicles remained unchanged, in accordance with the estimated tight spatial coupling of Ca²⁺ channels and release sites (effective “coupling distance” of 17 nm). Substitution experiments with synthetic Ca²⁺ chelators indicated the presence of endogenous Ca²⁺ buffers equivalent to 1 mM synthetic Ca²⁺-binding sites, approximately half of them with kinetics as fast as 1,2-Bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA). Synaptic sound encoding was largely unaltered, suggesting that excess exocytosis occurs extrasynaptically. We conclude that EF-hand Ca²⁺ buffers regulate presynaptic IHC function for metabolically efficient sound coding

    Optogenetics and electron tomography for structure-function analysis of cochlear ribbon synapses

    Get PDF
    Ribbon synapses of cochlear inner hair cells (IHCs) are specialized to indefatigably transmit sound information at high rates. To understand the underlying mechanisms, structure-function analysis of the active zone (AZ) of these synapses is essential. Previous electron microscopy studies of synaptic vesicle (SV) dynamics at the IHC AZ used potassium stimulation, which limited the temporal resolution to minutes. Here, we established optogenetic IHC stimulation followed by quick freezing within milliseconds and electron tomography to study the ultrastructure of functional synapse states with good temporal resolution in mice. We characterized optogenetic IHC stimulation by patch-clamp recordings from IHCs and postsynaptic boutons revealing robust IHC depolarization and neurotransmitter release. Ultrastructurally, the number of docked SVs increased upon short (17–25 ms) and long (48–76 ms) light stimulation paradigms. We did not observe enlarged SVs or other morphological correlates of homotypic fusion events. Our results indicate a rapid recruitment of SVs to the docked state upon stimulation and suggest that univesicular release prevails as the quantal mechanism of exocytosis at IHC ribbon synapses

    Macromolecular and electrical coupling between inner hair cells in the rodent cochlea

    Get PDF
    The inner hair cells (IHCs) within the cochlea convey sound information and have been thought to be electrically and metabolically independent from each other. Here authors report that a subset of IHCs are electrochemically coupled in ‘mini-syncytia’

    Optogenetics and electron tomography for structure-function analysis of cochlear ribbon synapses

    No full text
    Here we are showing ultrastructural analysis of optogenetically stimulated mice IHC ribbon synapses for correlating structure to function. This project presents the raw data files including the numerical data associated with the figures presented in the publication Chakrabarti et al. 2022
    corecore