60 research outputs found

    Genetic and Informatic Analyses Implicate Kif12 as a Candidate Gene within the Mpkd2 Locus That Modulates Renal Cystic Disease Severity in the Cys1cpk Mouse.

    Get PDF
    We have previously mapped the interval on Chromosome 4 for a major polycystic kidney disease modifier (Mpkd) of the B6(Cg)-Cys1cpk/J mouse model of recessive polycystic kidney disease (PKD). Informatic analyses predicted that this interval contains at least three individual renal cystic disease severity-modulating loci (Mpkd1-3). In the current study, we provide further validation of these predicted effects using a congenic mouse line carrying the entire CAST/EiJ (CAST)-derived Mpkd1-3 interval on the C57BL/6J background. We have also generated a derivative congenic line with a refined CAST-derived Mpkd1-2 interval and demonstrated its dominantly-acting disease-modulating effects (e.g., 4.2-fold increase in total cyst area;

    Supplemental Materials

    No full text
    Bland-Altman plots for the agreement between EM vs. MM and SAM vs. MM for left and right kidney volumes</p

    Beware the low HDAC11: males at risk for ischemic kidney injury

    No full text

    Simulation of real-time ultrasound-guided renal biopsy

    No full text

    Cystin, a novel cilia-associated protein, is disrupted in the cpk mouse model of polycystic kidney disease

    No full text
    The congenital polycystic kidney (cpk) mutation is the most extensively characterized mouse model of polycystic kidney disease (PKD). The renal cystic disease is fully expressed in homozygotes and is strikingly similar to human autosomal recessive PKD (ARPKD), whereas genetic background modulates the penetrance of the corresponding defect in the developing biliary tree. We now describe the positional cloning, mutation analysis, and expression of a novel gene that is disrupted in cpk mice. The cpk gene is expressed primarily in the kidney and liver and encodes a hydrophilic, 145–amino acid protein, which we term cystin. When expressed exogenously in polarized renal epithelial cells, cystin is detected in cilia, and its expression overlaps with polaris, another PKD-related protein. We therefore propose that the single epithelial cilium is important in the functional differentiation of polarized epithelia and that ciliary dysfunction underlies the PKD phenotype in cpk mice

    Innovations in studying in vivo cell behavior and pharmacology in complex tissues - microvascular endothelial cells in the spotlight

    No full text
    <p>Many studies on the molecular control underlying normal cell behavior and cellular responses to disease stimuli and pharmacological intervention are conducted in single-cell culture systems, while the read-out of cellular engagement in disease and responsiveness to drugs in vivo is often based on overall tissue responses. As the majority of drugs under development aim to specifically interact with molecular targets in subsets of cells in complex tissues, this approach poses a major experimental discrepancy that prevents successful development of new therapeutics. In this review, we address the shortcomings of the use of artificial (single) cell systems and of whole tissue analyses in creating a better understanding of cell engagement in disease and of the true effects of drugs. We focus on microvascular endothelial cells that actively engage in a wide range of physiological and pathological processes. We propose a new strategy in which in vivo molecular control of cells is studied directly in the diseased endothelium instead of at a (far) distance from the site where drugs have to act, thereby accounting for tissue-controlled cell responses. The strategy uses laser microdissection-based enrichment of microvascular endothelium which, when combined with transcriptome and (phospho)proteome analyses, provides a factual view on their status in their complex microenvironment. Combining this with miniaturized sample handling using microfluidic devices enables handling the minute sample input that results from this strategy. The multidisciplinary approach proposed will enable compartmentalized analysis of cell behavior and drug effects in complex tissue to become widely implemented in daily biomedical research and drug development practice.</p>
    • …
    corecore