4 research outputs found

    Magnetic Field Computation for PMTs Shielding Optimization

    No full text
    International audienceThe Photon Array for the studies of Radioactive and Ion Stable beams (PARIS) is a multidetector of clusters. Each cluster is composed of 9 units of two-shells phoswiches of LaBr3/NaI scintillators optically coupled to one photomultiplier tube. PARIS will be used in combination with the VAMOS spectrometer at GANIL. During the experiment, PMTs will be exposed to the constant magnetic fringe fields produced by a quadrupole. Magnetic shielding is essential to efficiently lower the magnetic field inside the PMTs. The design and the optimization of this shield is presented. A comparison is done between the simulated and the experimental values

    Search for 22^{22}Na in novae supported by a novel method for measuring femtosecond nuclear lifetimes

    No full text
    Classical novae are thermonuclear explosions in stellar binary systems, and important sources of 26^{26}Al and 22^{22}Na. While γ rays from the decay of the former radioisotope have been observed through-out the Galaxy, 22^{22}Na remains untraceable. The half-life of 22^{22}Na (2.6 yr) would allow the observation of its 1.275 MeV γ-ray line from a cosmic source. However, the prediction of such an observation requires good knowledge of the nuclear reactions involved in the production and destruction of this nucleus. The 22^{22}Na(p, γ)23^{23}Mg reaction remains the only source of large uncertainty about the amount of 22^{22}Na ejected. Its rate is dominated by a single reso- nance on the short-lived state at 7785.0(7) keV in 23^{23}Mg. In the present work, a combined analysis of particle-particle correlations and velocity-difference profiles is proposed to measure femtosecond nuclear lifetimes. The application of this novel method to the study of the 23^{23}Mg states, combining magnetic and highly-segmented tracking γ -ray spectrometers, places strong limits on the amount of 22^{22}Na produced in novae, explains its non-observation to date in γ rays (flux < 2.5×104^{-4} ph.cm2^{-2} s1^{-1}), and constrains its detectability with future space-borne observatories

    Dynamical Dipole and Equation of State in N/Z Asymmetric Fusion Reactions

    No full text
    In heavy ion reactions, in the case of N/Z asymmetry between projectile and target, the process leading to complete fusion is expected to produce pre-equilibrium dipole γ-ray emission. It is generated during the charge equilibration process and it is known as Dynamical Dipole. A new measurement of the dynamical dipole emission was performed by studying 16O + 116Sn at 12 MeV/u. These data, together with those measured at 8.1 MeV/u and 15.6 MeV/u for the same reaction, provide the dependence on the Dynamical Dipole total emission yield with beam energy and they can be compared with theoretical expectations. The experimental results show a weak increase of the Dynamical Dipole total yield with beam energies and are in agreement with the prediction of a theoretical model based on the Boltzmann–Nordheim–Vlasov (BNV) approach. The measured trend with beam energy does not confirm the rise and fall behavior previously reported for the same fused compound but with a much higher dipole moment
    corecore