3,301 research outputs found
On the pulsating strings in Sasaki-Einstein spaces
We study the class of pulsating strings in AdS_5 x Y^{p,q} and AdS_5 x
L^{p,q,r}. Using a generalized ansatz for pulsating string configurations, we
find new solutions for this class in terms of Heun functions, and derive the
particular case of AdS_5 x T^{1,1}, which was analyzed in arXiv:1006.1539
[hep-th]. Unfortunately, Heun functions are still little studied, and we are
not able to quantize the theory quasi-classically and obtain the first
corrections to the energy. The latter, due to AdS/CFT correspondence, is
supposed to give the anomalous dimensions of operators of the gauge theory dual
N=1 superconformal field theory.Comment: 9 pages, talk given at the 2nd Int. Conference AMiTaNS, 21-26 June
2010, Sozopol, Bulgaria, organized by EAC (Euro-American Consortium) for
Promoting AMiTaNS, to appear in the Proceedings of 2nd Int. Conference
AMiTaN
How Many Cooks Spoil the Soup?
In this work, we study the following basic question: "How much parallelism
does a distributed task permit?" Our definition of parallelism (or symmetry)
here is not in terms of speed, but in terms of identical roles that processes
have at the same time in the execution. We initiate this study in population
protocols, a very simple model that not only allows for a straightforward
definition of what a role is, but also encloses the challenge of isolating the
properties that are due to the protocol from those that are due to the
adversary scheduler, who controls the interactions between the processes. We
(i) give a partial characterization of the set of predicates on input
assignments that can be stably computed with maximum symmetry, i.e.,
, where is the minimum multiplicity of a state in
the initial configuration, and (ii) we turn our attention to the remaining
predicates and prove a strong impossibility result for the parity predicate:
the inherent symmetry of any protocol that stably computes it is upper bounded
by a constant that depends on the size of the protocol.Comment: 19 page
General-relativistic hydrodynamics of non-perfect fluids: 3+1 conservative formulation and application to viscous black-hole accretion
We consider the relativistic hydrodynamics of non-perfect fluids with the
goal of determining a formulation that is suited for numerical integration in
special-relativistic and general-relativistic scenarios. To this end, we review
the various formulations of relativistic second-order dissipative hydrodynamics
proposed so far and present in detail a particular formulation that is fully
general, causal, and can be cast into a 3+1 flux-conservative form as the one
employed in modern numerical-relativity codes. As an example, we employ a
variant of this formulation restricted to a relaxation-type equation for the
bulk viscosity in the general-relativistic magnetohydrodynamics code
. After adopting the formulation for a series of standard and
non-standard tests in 1+1-dimensional special-relativistic hydrodynamics, we
consider a novel general-relativistic scenario, namely, the stationary,
spherically symmetric viscous accretion onto a black hole. The newly developed
solution which can exhibit even considerable deviations from the inviscid
counterpart can be used as a testbed for numerical codes simulating
non-perfect fluids on curved backgrounds.Comment: 55 pages, 5 figure
Performance analysis of large scale MU-MIMO with optimal linear receivers
We consider the uplink of multicell multiuser MIMO (MU-MIMO) systems with very large antenna arrays at the base station (BS). We assume that the BS estimates the channel through uplink training, and then uses this channel estimate to detect the signals transmitted from a multiplicity of autonomous users in its cell. By taking the correlation between the channel estimate and the interference from other cells into account, we propose an optimal linear receiver (OLR) which maximizes the received signal-to-interference-plus-noise (SINR). Analytical approximations of the exact and lower bound on the achievable rate are then derived. The bound is very tight, especially at large number of BS antennas. We show that at low SINR, maximalratio combing (MRC) receiver performs as well as OLR, however at high SINR, OLR outperforms MRC. Compared with the typical minimum mean-square error receiver, our proposed OLR improves systematically the system performance, especially when the interference is large
Max-Weight Scheduling in Queueing Networks With Heavy-Tailed Traffic
We consider the problem of scheduling in a single-hop switched network with a mix of heavy-tailed and light-tailed traffic and analyze the impact of heavy-tailed traffic on the performance of Max-Weight scheduling. As a performance metric, we use the delay stability of traffic flows: A traffic flow is delay-stable if its expected steady-state delay is finite, and delay-unstable otherwise. First, we show that a heavy-tailed traffic flow is delay-unstable under any scheduling policy. Then, we focus on the celebrated Max-Weight scheduling policy and show that a light-tailed flow that conflicts with a heavy-tailed flow is also delay-unstable. This is true irrespective of the rate or the tail distribution of the light-tailed flow or other scheduling constraints in the network. Surprisingly, we show that a light-tailed flow can become delay-unstable, even when it does not conflict with heavy-tailed traffic. Delay stability in this case may depend on the rate of the light-tailed flow. Finally, we turn our attention to the class of Max-Weight-α scheduling policies. We show that if the α-parameters are chosen suitably, then the sum of the α-moments of the steady-state queue lengths is finite. We provide an explicit upper bound for the latter quantity, from which we derive results related to the delay stability of traffic flows, and the scaling of moments of steady-state queue lengths with traffic intensity.National Science Foundation (U.S.) (Grant CNS-0915988)National Science Foundation (U.S.) (Grant CCF-0728554)United States. Air Force. Office of Scientific Research. Multidisciplinary University Research Initiative (Grant W911NF-08- 1-0238
Phases of 4D Scalar-tensor black holes coupled to Born-Infeld nonlinear electrodynamics
Recent results show that when non-linear electrodynamics is considered the
no-scalar-hair theorems in the scalar-tensor theories (STT) of gravity, which
are valid for the cases of neutral black holes and charged black holes in the
Maxwell electrodynamics, can be circumvented. What is even more, in the present
work, we find new non-unique, numerical solutions describing charged black
holes coupled to non-linear electrodynamics in a special class of scalar-tensor
theories. One of the phases has a trivial scalar field and coincides with the
corresponding solution in General Relativity. The other four phases that we
find are characterized by the value of the scalar field charge. The causal
structure and some aspects of the stability of the solutions have also been
studied. For the scalar-tensor theories considered, the black holes have a
single, non-degenerate horizon, i.e., their causal structure resembles that of
the Schwarzschild black hole. The thermodynamic analysis of the stability of
the solutions indicates that a phase transition may occur.Comment: 18 pages, 8 figures, new phases, figures, clarifying remarks and
acknowledgements adde
A mesoscopic model for microscale hydrodynamics and interfacial phenomena: Slip, films, and contact angle hysteresis
We present a model based on the lattice Boltzmann equation that is suitable
for the simulation of dynamic wetting. The model is capable of exhibiting
fundamental interfacial phenomena such as weak adsorption of fluid on the solid
substrate and the presence of a thin surface film within which a disjoining
pressure acts. Dynamics in this surface film, tightly coupled with
hydrodynamics in the fluid bulk, determine macroscopic properties of primary
interest: the hydrodynamic slip; the equilibrium contact angle; and the static
and dynamic hysteresis of the contact angles. The pseudo- potentials employed
for fluid-solid interactions are composed of a repulsive core and an attractive
tail that can be independently adjusted. This enables effective modification of
the functional form of the disjoining pressure so that one can vary the static
and dynamic hysteresis on surfaces that exhibit the same equilibrium contact
angle. The modeled solid-fluid interface is diffuse, represented by a wall
probability function which ultimately controls the momentum exchange between
solid and fluid phases. This approach allows us to effectively vary the slip
length for a given wettability (i.e. the static contact angle) of the solid
substrate
Cellular Automata Applications in Shortest Path Problem
Cellular Automata (CAs) are computational models that can capture the
essential features of systems in which global behavior emerges from the
collective effect of simple components, which interact locally. During the last
decades, CAs have been extensively used for mimicking several natural processes
and systems to find fine solutions in many complex hard to solve computer
science and engineering problems. Among them, the shortest path problem is one
of the most pronounced and highly studied problems that scientists have been
trying to tackle by using a plethora of methodologies and even unconventional
approaches. The proposed solutions are mainly justified by their ability to
provide a correct solution in a better time complexity than the renowned
Dijkstra's algorithm. Although there is a wide variety regarding the
algorithmic complexity of the algorithms suggested, spanning from simplistic
graph traversal algorithms to complex nature inspired and bio-mimicking
algorithms, in this chapter we focus on the successful application of CAs to
shortest path problem as found in various diverse disciplines like computer
science, swarm robotics, computer networks, decision science and biomimicking
of biological organisms' behaviour. In particular, an introduction on the first
CA-based algorithm tackling the shortest path problem is provided in detail.
After the short presentation of shortest path algorithms arriving from the
relaxization of the CAs principles, the application of the CA-based shortest
path definition on the coordinated motion of swarm robotics is also introduced.
Moreover, the CA based application of shortest path finding in computer
networks is presented in brief. Finally, a CA that models exactly the behavior
of a biological organism, namely the Physarum's behavior, finding the
minimum-length path between two points in a labyrinth is given.Comment: To appear in the book: Adamatzky, A (Ed.) Shortest path solvers. From
software to wetware. Springer, 201
On the Exploitation of a High-throughput SHA-256 FPGA Design for HMAC
High-throughput and area-efficient designs of hash functions and corresponding mechanisms for Message Authentication Codes (MACs) are in high demand due to new security protocols that have arisen and call for security services in every transmitted data packet. For instance, IPv6 incorporates the IPSec protocol for secure data transmission. However, the IPSec's performance bottleneck is the HMAC mechanism which is responsible for authenticating the transmitted data. HMAC's performance bottleneck in its turn is the underlying hash function. In this article a high-throughput and small-size SHA-256 hash function FPGA design and the corresponding HMAC FPGA design is presented. Advanced optimization techniques have been deployed leading to a SHA-256 hashing core which performs more than 30% better, compared to the next better design. This improvement is achieved both in terms of throughput as well as in terms of throughput/area cost factor. It is the first reported SHA-256 hashing core that exceeds 11Gbps (after place and route in Xilinx Virtex 6 board)
Stress testing the ELBA water model
© 2015 © 2015 The Author(s). Published by Taylor & Francis. The ELBA coarse-grained model describes a water molecule as a single-site Lennard-Jones particle embedded with a point dipole. ELBA was previously reported to capture several properties of real water with relatively high accuracy, while being up to two orders of magnitude more computationally efficient than atomistic models. Here, we stress test the ELBA model by investigating the temperature and pressure dependences of two most important water properties, the liquid density and the self-diffusion coefficient. In particular, molecular dynamics simulations are performed spanning temperatures from 268 K up to 378 K and pressures from 1 atm up to 4000 atm. Comparisons are made with literature data from experiments and from simulations of traditional three-site atomistic models. Remarkably, the ELBA results show an overall similar (and sometimes higher) accuracy with respect to the atomistic data. We also calculate a number of additional thermodynamic properties at ambient conditions, namely isothermal compressibility, shear viscosity, isobaric heat capacity, thermal expansion coefficient and melting point. The accuracy of ELBA is relatively good compared to atomistic and other coarse-grained models
- …