24 research outputs found

    Thickness-Dependent Differential Reflectance Spectra of Monolayer and Few-Layer MoS2, MoSe2, WS2 and WSe2

    Full text link
    The research field of two dimensional (2D) materials strongly relies on optical microscopy characterization tools to identify atomically thin materials and to determine their number of layers. Moreover, optical microscopy-based techniques opened the door to study the optical properties of these nanomaterials. We presented a comprehensive study of the differential reflectance spectra of 2D semiconducting transition metal dichalcogenides (TMDCs), MoS2, MoSe2, WS2, and WSe2, with thickness ranging from one layer up to six layers. We analyzed the thickness-dependent energy of the different excitonic features, indicating the change in the band structure of the different TMDC materials with the number of layers. Our work provided a route to employ differential reflectance spectroscopy for determining the number of layers of MoS2, MoSe2, WS2, and WSe2.Comment: Main text (3 Figures) and Supp. Info. (23 Figures

    Biaxial strain tuning of the optical properties of single-layer transition metal dichalcogenides

    Get PDF
    Since their discovery, single-layer semiconducting transition metal dichalcogenides have attracted much attention, thanks to their outstanding optical and mechanical properties. Strain engineering in these two-dimensional materials aims to tune their bandgap energy and to modify their optoelectronic properties by the application of external strain. In this paper, we demonstrate that biaxial strain, both tensile and compressive, can be applied and released in a timescale of a few seconds in a reproducible way on transition metal dichalcogenides monolayers deposited on polymeric substrates. We can control the amount of biaxial strain applied by letting the substrate expand or compress. To do this, we change the substrate temperature and choose materials with a large thermal expansion coefficient. After the investigation of the substrate-dependent strain transfer, we performed micro-differential spectroscopy of four transition metal dichalcogenides monolayers (MoS2, MoSe2, WS2, WSe2) under the application of biaxial strain and measured their optical properties. For tensile strain, we observe a redshift of the bandgap that reaches a value as large as 95 meV/% in the case of single-layer WS2 deposited on polypropylene. The observed bandgap shifts as a function of substrate extension/compression follow the order MoSe2 < MoS2 < WSe2 < WS2. Theoretical calculations of these four materials under biaxial strain predict the same trend for the material-dependent rates of the shift and reproduce well the features observed in the measured reflectance spectra

    Avalanche amplification of a single exciton in a semiconductor nanowire

    Full text link
    Interfacing single photons and electrons is a crucial ingredient for sharing quantum information between remote solid-state qubits. Semiconductor nanowires offer the unique possibility to combine optical quantum dots with avalanche photodiodes, thus enabling the conversion of an incoming single photon into a macroscopic current for efficient electrical detection. Currently, millions of excitation events are required to perform electrical read-out of an exciton qubit state. Here we demonstrate multiplication of carriers from only a single exciton generated in a quantum dot after tunneling into a nanowire avalanche photodiode. Due to the large amplification of both electrons and holes (> 10^4), we reduce by four orders of magnitude the number of excitation events required to electrically detect a single exciton generated in a quantum dot. This work represents a significant step towards single-shot electrical read-out and offers a new functionality for on-chip quantum information circuits

    Single-photon emitters in GaSe

    Get PDF
    Single-photon sources are important building blocks for quantum information technology. Emitters based on solid-state systems provide a viable route to integration in photonic devices. Here, we report on single-photon emitters in the layered semiconductor GaSe. We identify the exciton and biexciton transition of the quantum emitters with power-dependent photoluminescence and photon statistics measurements. We find evidence that the localization of the excitons is related to deformations of the GaSe crystal, caused by nanoscale selenium inclusions, which are incorporated in the crystal. These deformations give rise to local strain fields, which induce confinement potentials for the excitons. This mechanism lights the way for the controlled positioning of single-photon emitters in GaSe on the nanoscale

    Biaxial strain in atomically thin transition metal dichalcogenides

    No full text
    Strain engineering in single-layer semiconducting transition metal dichalcogenides aims to tune their bandgap energy and to modify their optoelectronic properties by the application of external strain. In this paper we study transition metal dichalcogenides monolayers deposited on polymeric substrates under the application of biaxial strain, both tensile and compressive. We can control the amount of biaxial strain applied by letting the substrate thermally expand or compress by changing the substrate temperature. After modelling the substrate-dependent strain transfer process with a finite elements simulation, we performed micro-differential spectroscopy of four transition metal dichalcogenides monolayers (MoS2, MoSe2, WS2, WSe2) under the application of biaxial strain and measured their optical properties. For tensile strain we observe a redshift of the bandgap that reaches a value as large as 94 meV/% in the case of single-layer WS2 deposited on polypropylene. The observed bandgap shifts as a function of substrate extension/ compression follow the order WS2 < WSe2 < MoS2 < MoSe2
    corecore