2,556 research outputs found

    Classification of All Poisson-Lie Structures on an Infinite-Dimensional Jet Group

    Full text link
    A local classification of all Poisson-Lie structures on an infinite-dimensional group G∞G_{\infty} of formal power series is given. All Lie bialgebra structures on the Lie algebra {\Cal G}_{\infty} of G∞G_{\infty} are also classified.Comment: 11 pages, AmSTeX fil

    Stub model for dephasing in a quantum dot

    Full text link
    As an alternative to Buttiker's dephasing lead model, we examine a dephasing stub. Both models are phenomenological ways to introduce decoherence in chaotic scattering by a quantum dot. The difference is that the dephasing lead opens up the quantum dot by connecting it to an electron reservoir, while the dephasing stub is closed at one end. Voltage fluctuations in the stub take over the dephasing role from the reservoir. Because the quantum dot with dephasing lead is an open system, only expectation values of the current can be forced to vanish at low frequencies, while the outcome of an individual measurement is not so constrained. The quantum dot with dephasing stub, in contrast, remains a closed system with a vanishing low-frequency current at each and every measurement. This difference is a crucial one in the context of quantum algorithms, which are based on the outcome of individual measurements rather than on expectation values. We demonstrate that the dephasing stub model has a parameter range in which the voltage fluctuations are sufficiently strong to suppress quantum interference effects, while still being sufficiently weak that classical current fluctuations can be neglected relative to the nonequilibrium shot noise.Comment: 8 pages with 1 figure; contribution for the special issue of J.Phys.A on "Trends in Quantum Chaotic Scattering

    Patterns and localized structures in bistable semiconductor resonators

    Full text link
    We report experiments on spatial switching dynamics and steady state structures of passive nonlinear semiconductor resonators of large Fresnel number. Extended patterns and switching front dynamics are observed and investigated. Evidence of localization of structures is given.Comment: 5 pages with 9 figure

    Theory of electronic transport through a triple quantum dot in the presence of magnetic field

    Full text link
    Theory of electronic transport through a triangular triple quantum dot subject to a perpendicular magnetic field is developed using a tight binding model. We show that magnetic field allows to engineer degeneracies in the triple quantum dot energy spectrum. The degeneracies lead to zero electronic transmission and sharp dips in the current whenever a pair of degenerate states lies between the chemical potential of the two leads. These dips can occur with a periodicity of one flux quantum if only two levels contribute to the current or with half flux quantum if the three levels of the triple dot contribute. The effect of strong bias voltage and different lead-to-dot connections on Aharonov-Bohm oscillations in the conductance is also discussed

    Discrete structure of ultrathin dielectric films and their surface optical properties

    Get PDF
    The boundary problem of linear classical optics about the interaction of electromagnetic radiation with a thin dielectric film has been solved under explicit consideration of its discrete structure. The main attention has been paid to the investigation of the near-zone optical response of dielectrics. The laws of reflection and refraction for discrete structures in the case of a regular atomic distribution are studied and the structure of evanescent harmonics induced by an external plane wave near the surface is investigated in details. It is shown by means of analytical and numerical calculations that due to the existence of the evanescent harmonics the laws of reflection and refraction at the distances from the surface less than two interatomic distances are principally different from the Fresnel laws. From the practical point of view the results of this work might be useful for the near-field optical microscopy of ultrahigh resolution.Comment: 25 pages, 16 figures, LaTeX2.09, to be published in Phys.Rev.

    Polarisation Patterns and Vectorial Defects in Type II Optical Parametric Oscillators

    Get PDF
    Previous studies of lasers and nonlinear resonators have revealed that the polarisation degree of freedom allows for the formation of polarisation patterns and novel localized structures, such as vectorial defects. Type II optical parametric oscillators are characterised by the fact that the down-converted beams are emitted in orthogonal polarisations. In this paper we show the results of the study of pattern and defect formation and dynamics in a Type II degenerate optical parametric oscillator for which the pump field is not resonated in the cavity. We find that traveling waves are the predominant solutions and that the defects are vectorial dislocations which appear at the boundaries of the regions where traveling waves of different phase or wave-vector orientation are formed. A dislocation is defined by two topological charges, one associated with the phase and another with the wave-vector orientation. We also show how to stabilize a single defect in a realistic experimental situation. The effects of phase mismatch of nonlinear interaction are finally considered.Comment: 38 pages, including 15 figures, LATeX. Related material, including movies, can be obtained from http://www.imedea.uib.es/Nonlinear/research_topics/OPO

    A robust, scanning quantum system for nanoscale sensing and imaging

    Get PDF
    Controllable atomic-scale quantum systems hold great potential as sensitive tools for nanoscale imaging and metrology. Possible applications range from nanoscale electric and magnetic field sensing to single photon microscopy, quantum information processing, and bioimaging. At the heart of such schemes is the ability to scan and accurately position a robust sensor within a few nanometers of a sample of interest, while preserving the sensor's quantum coherence and readout fidelity. These combined requirements remain a challenge for all existing approaches that rely on direct grafting of individual solid state quantum systems or single molecules onto scanning-probe tips. Here, we demonstrate the fabrication and room temperature operation of a robust and isolated atomic-scale quantum sensor for scanning probe microscopy. Specifically, we employ a high-purity, single-crystalline diamond nanopillar probe containing a single Nitrogen-Vacancy (NV) color center. We illustrate the versatility and performance of our scanning NV sensor by conducting quantitative nanoscale magnetic field imaging and near-field single-photon fluorescence quenching microscopy. In both cases, we obtain imaging resolution in the range of 20 nm and sensitivity unprecedented in scanning quantum probe microscopy

    Interaction of two modulational instabilities in a semiconductor resonator

    Get PDF
    The interaction of two neighboring modulational instabilities in a coherently driven semiconductor cavity is investigated. First, an asymptotic reduction of the general equations is performed in the limit of a nearly vertical input-output characteristic. Next, a normal form is derived in the limit where the two instabilities are close to one other. An infinity of branches of periodic solutions are found to emerge from the unstable portion of the homogeneous branch. These branches have a nontrivial envelope in the bifurcation diagram that can either smoothly join the two instability points or form an isolated branch of solutions

    Phase-Locked Spatial Domains and Bloch Domain Walls in Type-II Optical Parametric Oscillators

    Get PDF
    We study the role of transverse spatial degrees of freedom in the dynamics of signal-idler phase locked states in type-II Optical Parametric Oscillators. Phase locking stems from signal-idler polarization coupling which arises if the cavity birefringence and/or dichroism is not matched to the nonlinear crystal birefringence. Spontaneous Bloch domain wall formation is theoretically predicted and numerically studied. Bloch walls connect, by means of a polarization transformation, homogeneous regions of self-phase locked solutions. The parameter range for their existence is analytically found. The polarization properties and the dynamics of walls in one- and two transverse spatial dimensions is explained. Transition from Bloch to Ising walls is characterized, the control parameter being the linear coupling strength. Wall dynamics governs spatiotemporal dynamical states of the system, which include transient curvature driven domain growth, persistent dynamics dominated by spiraling defects for Bloch walls, and labyrinthine pattern formation for Ising walls.Comment: 27 pages, 16 figure
    • 

    corecore