28 research outputs found

    Compact electrically detected magnetic resonance setup

    Get PDF
    Electrically detected magnetic resonance (EDMR) is a commonly used technique for the study of spin-dependent transport processes in semiconductor materials and electro-optical devices. Here, we present the design and implementation of a compact setup to measure EDMR, which is based on a commercially available benchtop electron paramagnetic resonance (EPR) spectrometer. The electrical detection part uses mostly off-the-shelf electrical components and is thus highly customizable. We present a characterization and calibration procedure for the instrument that allowed us to quantitatively reproduce results obtained on a silicon-based reference sample with a β€œlarge-scale” state-of- the-art instrument. This shows that EDMR can be used in novel contexts relevant for semiconductor device fabrication like clean room environments and even glove boxes. As an application example, we present data on a class of environment-sensitive objects new to EDMR, semiconducting organic microcrystals, and discuss similarities and differences to data obtained for thin-film devices of the same molecule

    Synergistic and Additive Effects of Epigallocatechin Gallate and Digitonin on Plasmodium Sporozoite Survival and Motility

    Get PDF
    BACKGROUND: Most medicinal plants contain a mixture of bioactive compounds, including chemicals that interact with intracellular targets and others that can act as adjuvants to facilitate absorption of polar agents across cellular membranes. However, little is known about synergistic effects between such potential drug candidates and adjuvants. To probe for such effects, we tested the green tea compound epigallocatechin gallate (EGCG) and the membrane permeabilising digitonin on Plasmodium sporozoite motility and viability. METHODOLOGY/PRINCIPAL FINDINGS: Green fluorescent P. berghei sporozoites were imaged using a recently developed visual screening methodology. Motility and viability parameters were automatically analyzed and IC50 values were calculated, and the synergism of drug and adjuvant was assessed by the fractional inhibitory concentration index. Validating our visual screening procedure, we showed that sporozoite motility and liver cell infection is inhibited by EGCG at nontoxic concentrations. Digitonin synergistically increases the cytotoxicity of EGCG on sporozoite survival, but shows an additive effect on sporozoite motility. CONCLUSIONS/SIGNIFICANCE: We proved the feasibility of performing highly reliable visual screens for compounds against Plasmodium sporozoites. We thereby could show an advantage of administering mixtures of plant metabolites on inhibition of cell motility and survival. Although the effective concentration of both drugs is too high for use in malaria prophylaxis, the demonstration of a synergistic effect between two plant compounds could lead to new avenues in drug discovery

    P-590: Obesity regulates renal endothelin and endothelin ETA receptor expression in vivo. Differential effects of chronic ETA receptor blockade

    Get PDF
    ETA receptors have been implicated in obesity-associated hypertension (Hypertension 1999; 33: 1169). We characterized the renal endothelin system in diet-induced obesity and determined the effects of chronic treatment with the ETA antagonist darusentan. C57BL/6J mice were fed a standard diet (control) or a high-fat diet (Harlan TD88137) with or without darusentan (50 mg/kg/d, 30 wk). Total RNA was extracted from whole kidneys and mRNA expression of preproendothelin-1 (ppET-1), ETA receptors, and Ξ²-actin were determined by RT-PCR using mouse-specific primers. PCR-products were normalized vs. Ξ²-actin or 18S rRNA. Renal ET-1 protein was measured by RIA/HPLC. High fat diet increased body weight by 257% compared to 54% (control diet). Darusentan had no effect on body weight in obese mice (263%) and treatments had no effect on systolic blood pressure. Obesity was associated with upregulation of renal ETA receptors (144Β±5% vs 100Β±7%, p<0.05 vs. control) and to a lesser extent, preproendothelin-1 (113Β±5% vs.100Β±2%, p<0.05 vs. control). In obese mice chronic darusentan treatment in part prevented the ETA receptor upregulation (126% vs. 144Β±5%, p<0.05) but had no significant effect on ppET-1 mRNA expression (101Β±9 vs. 100Β±2%, n.s.). Renal ET-1 protein increased in obese animals (from 190Β±18 to 267Β±19 pg/g tissue, p<0.05 vs. control). This increase was not affected by concomitant darusentan treatment (n.s.). These data for the first time demonstrate that obesity in normotensive rats is associated with upregulation of renal ETA receptor expression suggesting that body weight per se affects ET receptor expression in the kidney. Our data further indicate that in this model ETA receptors control expression of the ETA receptor but not the ppET-1 gene, suggesting autocrine regulation in vivo. These mechanisms might contribute to the pathogenesis of obesity-associated diseases affecting the kidney and/or blood pressur

    Setup of an In Vitro Test System for Basic Studies on Biofilm Behavior of Mixed-Species Cultures with Dental and Periodontal Pathogens

    Get PDF
    BACKGROUND: Caries and periodontitis are important human diseases associated with formation of multi-species biofilms. The involved bacteria are intensively studied to understand the molecular basis of the interactions in such biofilms. This study established a basic in vitro single and mixed-species culture model for oral bacteria combining three complimentary methods. The setup allows a rapid screening for effects in the mutual species interaction. Furthermore, it is easy to handle, inexpensive, and reproducible. METHODS: Streptococcus mitis, S. salivarius and S. sanguinis, typical inhabitants of the healthy oral cavity, S. mutans as main carriogenic species, and Porphyromonas gingivalis, Fusobacterium nucleatum, Parvimonas micra, S. intermedius and Aggregatibacter actinomycetemcomitans as periodontitis-associated bacteria, were investigated for their biofilm forming ability. Different liquid growth media were evaluated. Safranin-staining allowed monitoring of biofilm formation under the chosen conditions. Viable counts and microscopy permitted investigation of biofilm behavior in mixed-species and transwell setups. FINDINGS: S. mitis, F. nucleatum, P. gingivalis and P. micra failed to form biofilm structures. S. mutans, S. sanguinis, S. intermedius and S. salivarius established abundant biofilm masses in CDM/sucrose. A. actinomycetemcomitans formed patchy monolayers. For in depth analysis S. mitis, S. mutans and A. actinomycetemcomitans were chosen, because i) they are representatives of the physiological-, cariogenic and periodontitis-associated bacterial flora, respectively and ii) their difference in their biofilm forming ability. Microscopic analysis confirmed the results of safranin staining. Investigation of two species combinations of S. mitis with either S. mutans or A. actinomycetemcomitans revealed bacterial interactions influencing biofilm mass, biofilm structure and cell viability. CONCLUSIONS: This setup shows safranin staining, microscopic analysis and viable counts together are crucial for basic examination and evaluation of biofilms. Our experiment generated meaningful results, exemplified by the noted S. mitis influence, and allows a fast decision about the most important bacterial interactions which should be investigated in depth

    Dynamic contrast in scanning microscopic OCT

    Full text link
    While optical coherence tomography (OCT) provides a resolution down to 1 micrometer it has difficulties to visualize cellular structures due to a lack of scattering contrast. By evaluating signal fluctuations, a significant contrast enhancement was demonstrated using time-domain full-field OCT (FF-OCT), which makes cellular and subcellular structures visible. The putative cause of the dynamic OCT signal is ATP-dependent motion of cellular structures in a sub-micrometer range, which provides histology-like contrast. Here we demonstrate dynamic contrast with a scanning frequency-domain OCT (FD-OCT). Given the inherent sectional imaging geometry, scanning FD-OCT provides depth-resolved images across tissue layers, a perspective known from histopathology, much faster and more efficiently than FF-OCT. Both, shorter acquisition times and tomographic depth-sectioning reduce the sensitivity of dynamic contrast for bulk tissue motion artifacts and simplify their correction in post-processing. The implementation of dynamic contrast makes microscopic FD-OCT a promising tool for histological analysis of unstained tissues.Comment: 7 pages, 3 figures, 1 Video available on reques

    ARIA digital anamorphosis: Digital transformation of health and care in airway diseases from research to practice

    Get PDF
    Digital anamorphosis is used to define a distorted image of health and care that may be viewed correctly using digital tools and strategies. MASK digital anamorphosis represents the process used by MASK to develop the digital transformation of health and care in rhinitis. It strengthens the ARIA change management strategy in the prevention and management of airway disease. The MASK strategy is based on validated digital tools. Using the MASK digital tool and the CARAT online enhanced clinical framework, solutions for practical steps of digital enhancement of care are proposed

    Π—Π°Π΄Π°Ρ‡Π° Ρ€ΠΎΠ·Ρ€Π°Ρ…ΡƒΠ½ΠΊΡƒ відхилСння ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Ρ– Ρ‚ΠΊΠ°Π½ΠΈΠ½ΠΈ для Π±Π΅Π·ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π½ΠΎΡ— фотоакустичної Ρ‚ΠΎΠΌΠΎΠ³Ρ€Π°Ρ„Ρ–Ρ—

    No full text
    Background. Photoacoustic tomography (PAT) is a relatively new imaging modality,which allows e.g. visualizing the vascular network in biological tissue noninvasively. This tomographic method has an advantage in comparison to pure optical/acoustical methods due to high optical contrast and low acoustic scattering in deep tissue. The common PAT methodology, based on measurements of the acoustic pressure by piezoelectric sensors placed on the tissue surface, limits its practical versatility. A novel, completely non-contact and full-field PAT system is described. In noncontact PAT the measurement of surface displacement induced by the acoustic pressure at the tissue/air border is researched.Objective. To solve a simulation problem of the displacement calculation based on the medium pressure, which consists in deriving a formula for recalculating the pressure in the surface displacement based on the momentum conservation law, developing a simulation technique, and comparing the error of the proposed technique with the earlier used one.Methods. Comparing the experimental data with simulated pressure data in the k-Wave toolbox. The criterion of comparison is the relative quadratic error.Results. The simulation results of the displacement based on a new approach are more consistent with the experimental data than previous. The quadratic error numerical value of the new approach is 18 % and the previous is 71 %.Conclusions. The theoretical features of the surface displacement simulation are investigated and the solution of this problem is proposed based on momentum conservation law. The implementation of the proposed methodology has a four times smaller simulation error compared to the previous technique, so it can be implemented in the non-contact PAT. The residual error can be caused by the properties of the tissue, which are not taken into account in the model, which requires further research.ΠŸΡ€ΠΎΠ±Π»Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ°. ЀотоакустичСская томография (Π€AT) являСтся ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π½ΠΎΠ²Ρ‹ΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ диагностики, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ позволяСт ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ сСтки сосудов биологичСской Ρ‚ΠΊΠ°Π½ΠΈ Π½Π΅ΠΈΠ½Π²Π°Π·ΠΈΠ²Π½ΠΎ. Π­Ρ‚ΠΎΡ‚ томографичСский ΠΌΠ΅Ρ‚ΠΎΠ΄ ΠΈΠΌΠ΅Π΅Ρ‚ прСимущСство Π½Π°Π΄ Π΄Ρ€ΡƒΠ³ΠΈΠΌΠΈ сугубо оптичСскими/акустичСскими ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ благодаря Π±ΠΎΠ»ΡŒΡˆΠΎΠΌΡƒ оптичСскому контрасту ΠΈ Π½ΠΈΠ·ΠΊΠΈΠΌ потСрям энСргии Π² тканях. ΠžΠ±Ρ‰Π΅ΠΈΠ·Π²Π΅ΡΡ‚Π½Π°Ρ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° ЀАВ, которая основываСтся Π½Π° измСрСниях акустичСского давлСния ΠΏΡŒΠ΅Π·ΠΎΡΠ»Π΅ΠΊΡ‚Ρ€ΠΈΡ‡Π΅ΡΠΊΠΈΠΌΠΈ Π΄Π°Ρ‚Ρ‡ΠΈΠΊΠ°ΠΌΠΈ, Ρ€Π°Π·ΠΌΠ΅Ρ‰Π΅Π½Π½Ρ‹ΠΌΠΈ Π½Π° повСрхности Ρ‚ΠΊΠ°Π½ΠΈ, ΠΈΠΌΠ΅Π΅Ρ‚ ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½ΠΎΠ΅ практичСскоС ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅. Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ описана новая, ΠΏΠΎΠ»Π½ΠΎΡΡ‚ΡŒΡŽ бСсконтактная Π€AT-систСма с ΠΏΠΎΠ»Π½Ρ‹ΠΌ Π²ΠΎΠ·Π±ΡƒΠΆΠ΄Π΅Π½ΠΈΠ΅ΠΌ. ИсслСдовано основноС ΠΎΡ‚Π»ΠΈΡ‡ΠΈΠ΅ бСсконтактной ЀАВ, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ состоит Π² ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΈ ΠΎΡ‚ΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠΉ повСрхности Ρ‚ΠΊΠ°Π½ΠΈ, Π²Ρ‹Π·Π²Π°Π½Π½Ρ‹Ρ… акустичСским Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ Π½Π° Π³Ρ€Π°Π½ΠΈΡ†Π΅ Ρ‚ΠΊΠ°Π½ΡŒβ€“Π²ΠΎΠ·Π΄ΡƒΡ….ЦСль исслСдования. Π Π΅ΡˆΠΈΡ‚ΡŒ Π·Π°Π΄Π°Ρ‡Ρƒ модСлирования отклонСния повСрхности Π½Π° основС давлСния Π²Π½ΡƒΡ‚Ρ€ΠΈ срСды, которая состоит Π² Π²Ρ‹Π²ΠΎΠ΄Π΅ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ для пСрСсчСта давлСния Π² ΠΎΡ‚ΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ повСрхности Π½Π° основС Π·Π°ΠΊΠΎΠ½Π° сохранСния ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ°, Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ модСлирования ΠΈ сравнСния ошибки ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΠΎΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ с Ρ€Π°Π½Π½Π΅Π΅ использованной.ΠœΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ. Π­ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Π΅ Π΄Π°Π½Π½Ρ‹Π΅ ΡΡ€Π°Π²Π½ΠΈΠ²Π°ΡŽΡ‚ΡΡ с ΠΏΡ€ΠΎΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΌ ΠΎΡ‚ΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ΠΌ повСрхности Π² ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ΅ k-Wave toolbox. ΠšΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠΉ сравнСния – ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ квадратичСская ошибка.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ исслСдования. ΠŸΡ€ΠΎΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ Π΄Π°Π½Π½Ρ‹Π΅ отклонСния повСрхности Π½Π° основС Π½ΠΎΠ²ΠΎΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ большС ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‚ экспСримСнту Π² сравнСнии с ΠΏΡ€Π΅Π΄Ρ‹Π΄ΡƒΡ‰Π΅ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΎΠΉ. ΠšΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π΅ΡΠΊΠ°Ρ ошибка Π½ΠΎΠ²ΠΎΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ составляСт 18 %, ΠΏΡ€Π΅Π΄Ρ‹Π΄ΡƒΡ‰Π΅ΠΉ – 71 %.Π’Ρ‹Π²ΠΎΠ΄Ρ‹. Π’ Ρ€Π°Π±ΠΎΡ‚Π΅ исслСдованы тСорСтичСскиС особСнности модСлирования отклонСния повСрхности ΠΈ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΎ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ этой Π·Π°Π΄Π°Ρ‡ΠΈ Π½Π° основании Π·Π°ΠΊΠΎΠ½Π° сохранСния ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ°. РСализация ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΠΎΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ ΠΈΠΌΠ΅Π΅Ρ‚ Π² Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅ Ρ€Π°Π·Π° ΠΌΠ΅Π½ΡŒΡˆΡƒΡŽ ΠΎΡˆΠΈΠ±ΠΊΡƒ модСлирования отклонСния Π² сравнСнии с ΠΏΡ€Π΅Π΄Ρ‹Π΄ΡƒΡ‰Π΅ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΎΠΉ, поэтому ΠΎΠ½Π° ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Ρ€Π΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π° Π² бСсконтактной ЀАВ. ΠžΡΡ‚Π°Ρ‚ΠΎΡ‡Π½Π°Ρ ошибка ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ обусловлСна свойствами Ρ‚ΠΊΠ°Π½ΠΈ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π½Π΅ ΡƒΡ‡Ρ‚Π΅Π½Ρ‹ Π² ΠΌΠΎΠ΄Π΅Π»ΠΈ, Ρ‡Ρ‚ΠΎ Ρ‚Ρ€Π΅Π±ΡƒΠ΅Ρ‚ Π΄Π°Π»ΡŒΠ½Π΅ΠΉΡˆΠΈΡ… исслСдований.ΠŸΡ€ΠΎΠ±Π»Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ°. Ѐотоакустична томографія (Π€AT) Ρ” відносно Π½ΠΎΠ²ΠΈΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ діагностики, який Π΄Π°Ρ” Π·ΠΌΠΎΠ³Ρƒ ΠΎΡ‚Ρ€ΠΈΠΌΠ°Ρ‚ΠΈ зобраТСння ΠΌΠ΅Ρ€Π΅ΠΆΡ– судин Π±Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎΡ— Ρ‚ΠΊΠ°Π½ΠΈΠ½ΠΈ Π½Π΅Ρ–Π½Π²Π°Π·ΠΈΠ²Π½ΠΎ. Π¦Π΅ΠΉ Ρ‚ΠΎΠΌΠΎΠ³Ρ€Π°Ρ„Ρ–Ρ‡Π½ΠΈΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ ΠΌΠ°Ρ” ΠΏΠ΅Ρ€Π΅Π²Π°Π³Ρƒ Π½Π°Π΄ Ρ–Π½ΡˆΠΈΠΌΠΈ суто ΠΎΠΏΡ‚ΠΈΡ‡Π½ΠΈΠΌΠΈ/акус­тичними ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ завдяки Π²Π΅Π»ΠΈΠΊΠΎΠΌΡƒ ΠΎΠΏΡ‚ΠΈΡ‡Π½ΠΎΠΌΡƒ контрасту Ρ– низьким Π²Ρ‚Ρ€Π°Ρ‚Π°ΠΌ Π΅Π½Π΅Ρ€Π³Ρ–Ρ— Π² Ρ‚ΠΊΠ°Π½ΠΈΠ½Π°Ρ…. Π—Π°Π³Π°Π»ΡŒΠ½ΠΎΠ²Ρ–Π΄ΠΎΠΌΠ° ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° ЀАВ, Ρ‰ΠΎ Π±Π°Π·ΡƒΡ”Ρ‚ΡŒΡΡ Π½Π° Π²ΠΈΠΌΡ–Ρ€ΡŽΠ²Π°Π½Π½ΡΡ… акустичного тиску п’єзоСлСктричними Π΄Π°Ρ‚Ρ‡ΠΈΠΊΠ°ΠΌΠΈ, Ρ€ΠΎΠ·ΠΌΡ–Ρ‰Π΅Π½ΠΈΠΌΠΈ Π½Π° ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Ρ– Ρ‚ΠΊΠ°Π½ΠΈΠ½ΠΈ, ΠΌΠ°Ρ” ΠΎΠ±ΠΌΠ΅ΠΆΠ΅Π½Π΅ ΠΏΡ€Π°ΠΊΡ‚ΠΈΡ‡Π½Π΅ використання. Π£ статті описана Π½ΠΎΠ²Π°, ΠΏΠΎΠ²Π½Ρ–ΡΡ‚ΡŽ Π±Π΅Π·ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π½Π° Π€AT-систСма Π· ΠΏΠΎΠ²Π½ΠΈΠΌ збудТСнням. ДослідТСно основну Π²Ρ–Π΄ΠΌΡ–Π½Π½Ρ–ΡΡ‚ΡŒ Π±Π΅Π·ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π½ΠΎΡ— ЀАВ, Ρ‰ΠΎ полягає Ρƒ Π²ΠΈΠΌΡ–Ρ€ΡŽΠ²Π°Π½Π½Ρ– Π²Ρ–Π΄Ρ…ΠΈΠ»Π΅Π½ΡŒ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Ρ– Ρ‚ΠΊΠ°Π½ΠΈΠ½ΠΈ, спричинСних акустичним тиском Π½Π° ΠΌΠ΅ΠΆΡ– тканина–повітря.ΠœΠ΅Ρ‚Π° дослідТСння. Розв’язати Π·Π°Π΄Π°Ρ‡Ρƒ модСлювання відхилСння ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Ρ– Π½Π° основі тиску всСрСдині сСрСдовища, Ρ‰ΠΎ полягає Ρƒ Π²ΠΈΠ²Π΅Π΄Π΅Π½Π½Ρ– Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΈ для ΠΏΠ΅Ρ€Π΅Ρ€Π°Ρ…ΡƒΠ½ΠΊΡƒ тиску Π² відхилСння ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Ρ– Π½Π° основі Π·Π°ΠΊΠΎΠ½Ρƒ збСрСТСння Ρ–ΠΌΠΏΡƒΠ»ΡŒΡΡƒ, Ρ€ΠΎΠ·Ρ€ΠΎΠ±Ρ†Ρ– ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ модСлювання Ρ– порівняння ΠΏΠΎΠΌΠΈΠ»ΠΊΠΈ Π·Π°ΠΏΡ€ΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½ΠΎΡ— ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ Π· Ρ€Π°Π½Ρ–ΡˆΠ΅ Π²ΠΈΠΊΠΎΡ€ΠΈΡΡ‚ΠΎΠ²ΡƒΠ²Π°Π½ΠΎΡŽ.ΠœΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° Ρ€Π΅Π°Π»Ρ–Π·Π°Ρ†Ρ–Ρ—. Π•ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ– Π΄Π°Π½Ρ– ΠΏΠΎΡ€Ρ–Π²Π½ΡŽΡŽΡ‚ΡŒΡΡ Π· ΠΏΡ€ΠΎΠΌΠΎΠ΄Π΅Π»ΡŒΠΎΠ²Π°Π½ΠΈΠΌ відхилСнням ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Ρ– Π² ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΡ– k-Wave toolbox. ΠšΡ€ΠΈΡ‚Π΅Ρ€Ρ–ΠΉ порівняння – відносна ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½Π° ΠΏΠΎΠΌΠΈΠ»ΠΊΠ°.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ дослідТСння. ΠŸΡ€ΠΎΠΌΠΎΠ΄Π΅Π»ΡŒΠΎΠ²Π°Π½Ρ– Π΄Π°Π½Ρ– відхилСння ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Ρ– Π½Π° основі Π½ΠΎΠ²ΠΎΡ— ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ Π±Ρ–Π»ΡŒΡˆΠ΅ Π²Ρ–Π΄ΠΏΠΎΠ²Ρ–Π΄Π°ΡŽΡ‚ΡŒ СкспСримСнту порівняно Π· ΠΏΠΎΠΏΠ΅Ρ€Π΅Π΄Π½ΡŒΠΎΡŽ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΎΡŽ. ΠšΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½Π° ΠΏΠΎΠΌΠΈΠ»ΠΊΠ° Π½ΠΎΠ²ΠΎΡ— ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ ΡΡ‚Π°Π½ΠΎΠ²ΠΈΡ‚ΡŒ 18 %, ΠΏΠΎΠΏΠ΅Ρ€Π΅Π΄Π½ΡŒΠΎΡ— – 71 %.Висновки. Π£ Ρ€ΠΎΠ±ΠΎΡ‚Ρ– дослідТСно Ρ‚Π΅ΠΎΡ€Π΅Ρ‚ΠΈΡ‡Π½Ρ– особливості модСлювання відхилСння ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Ρ– Ρ‚Π° Π·Π°ΠΏΡ€ΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½ΠΎ розв’язання Ρ†Ρ–Ρ”Ρ— Π·Π°Π΄Π°Ρ‡Ρ– Π½Π° основі Π·Π°ΠΊΠΎΠ½Ρƒ збСрСТСння Ρ–ΠΌΠΏΡƒΠ»ΡŒΡΡƒ. РСалізація Π·Π°ΠΏΡ€ΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½ΠΎΡ— ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ ΠΌΠ°Ρ” Π² Ρ‡ΠΎΡ‚ΠΈΡ€ΠΈ Ρ€Π°Π·ΠΈ ΠΌΠ΅Π½ΡˆΡƒ ΠΏΠΎΠΌΠΈΠ»ΠΊΡƒ модСлювання відхилСння порівняно Π· ΠΏΠΎΠΏΠ΅Ρ€Π΅Π΄Π½ΡŒΠΎΡŽ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΎΡŽ, Ρ‚ΠΎΠΌΡƒ Π²ΠΎΠ½Π° ΠΌΠΎΠΆΠ΅ Π±ΡƒΡ‚ΠΈ Ρ€Π΅Π°Π»Ρ–Π·ΠΎΠ²Π°Π½Π° Ρƒ Π±Π΅Π·ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π½Ρ–ΠΉ ЀАВ. Π—Π°Π»ΠΈΡˆΠΊΠΎΠ²Π° ΠΏΠΎΠΌΠΈΠ»ΠΊΠ° ΠΌΠΎΠΆΠ΅ Π±ΡƒΡ‚ΠΈ спричинСна властивостями Ρ‚ΠΊΠ°Π½ΠΈΠ½ΠΈ, які Π½Π΅ Π²Ρ€Π°Ρ…ΠΎΠ²Π°Π½Ρ– Π² ΠΌΠΎΠ΄Π΅Π»Ρ–, Ρ‰ΠΎ ΠΏΠΎΡ‚Ρ€Π΅Π±ΡƒΡ” ΠΏΠΎΠ΄Π°Π»ΡŒΡˆΠΈΡ… Π΄ΠΎΡΠ»Ρ–Π΄ΠΆΠ΅Π½ΡŒ
    corecore