26 research outputs found

    Bus Vent Design Evolution for the Solar Dynamics Observatory

    Get PDF
    As a spacecraft undergoes ascent in a launch vehicle, its pressure environment transitions from one atmosphere to high vacuum in a matter of minutes. Venting of internal cavities is necessary to prevent the buildup of pressure differentials across cavity walls. Opposing the need to vent these volumes freely into space are thermal, optical, and electrostatic requirements for limiting or prohibiting the intrusion of unwanted energy into the same cavities. Bus vent design evolution is discussed for the Solar Dynamics Observatory. Design changes were influenced by a number of factors and concerns, such as contamination control, electrostatic discharge, changes in bus material, and driving fairing ascent pressure for a launch vehicle that was just entering service as this satellite project had gotten underway

    Modeling of Lunar Dust Contamination Due to Plume Impingement

    Get PDF
    During the Apollo missions it became apparent that lunar dust was a significant hazard. Problems included: surface obscuration during landing sequence; abrasion damage to gouge faces and helmet visors; mechanism clogging; development of space suit pressurization leaks; loss of radiator heat rejection capabilities to the point where vulnerable equipment exceeded maximum survival temperature ratings; temporary vision and respiratory problems within the Apollo Lunar Module (LM). NASA Constellation Program features many system-level components, including the Altair Lunar Lander. Altair to endure longer periods at lunar surface conditions: Apollo LM, about three days; Altair, over seven months. Program managers interested in plume-generated dust transport onto thermal control surface radiators of the first Altair created by its own landing operations

    Transient Plume Model Testing Using LADEE Spacecraft Attitude Control System Operations

    Get PDF
    We have learned it is conceivable that the Neutral Mass Spectrometer on board the Lunarr Atmosphere Dust Environment Explorer (LADEE) could measure gases from surface-reflected Attitude Control System (ACS) thruster plume. At minimum altitude, the measurement would be maximized, and gravitational influence minimized ("short" time-of-flight (TOF) situation) Could use to verify aspects of thruster plume modeling Model the transient disturbance to NMS measurements due to ACS gases reflected from lunar surface Observe evolution of various model characteristics as measured by NMS Species magnitudes, TOF measurements, angular distribution, species separation effect

    Highlights of Transient Plume Impingement Model Validation and Applications

    Get PDF
    This paper describes highlights of an ongoing validation effort conducted to assess the viability of applying a set of analytic point source transient free molecule equations to model behavior ranging from molecular effusion to rocket plumes. The validation effort includes encouraging comparisons to both steady and transient studies involving experimental data and direct simulation Monte Carlo results. Finally, this model is applied to describe features of two exotic transient scenarios involving NASA Goddard Space Flight Center satellite programs

    Thermal Vacuum Chamber Repressurization with Instrument Purging

    Get PDF
    At the end of James Webb Space Telescope (JWST) OTIS (Optical Telescope Element-OTE-Integrated Science Instrument Module-ISIM) cryogenic vacuum testing in NASA Johnson Space Centers (JSCs) thermal vacuum (TV) Chamber A, contamination control (CC) engineers are mooting the idea that chamber particulate material stirred up by the repressurization process may be kept from falling into the ISIM interior to some degree by activating instrument purge flows over some initial period before opening the chamber valves. This memo describes development of a series of models designed to describe this process. These are strung together in tandem to estimate overpressure evolution from which net outflow velocity behavior may be obtained. Creeping flow assumptions are then used to determine the maximum particle size that may be kept suspended above the ISIM aperture, keeping smaller particles from settling within the instrument module

    Direct simulation Monte Carlo prediction of on-orbit contaminant deposit levels for HALOE

    Get PDF
    A three-dimensional version of the direct simulation Monte Carlo method is adapted to assess the contamination environment surrounding a highly detailed model of the Upper Atmosphere Research Satellite. Emphasis is placed on simulating a realistic, worst-case set of flow field and surface conditions and geometric orientations for the satellite in order to estimate an upper limit for the cumulative level of volatile organic molecular deposits at the aperture of the Halogen Occultation Experiment. A detailed description of the adaptation of this solution method to the study of the satellite's environment is also presented. Results pertaining to the satellite's environment are presented regarding contaminant cloud structure, cloud composition, and statistics of simulated molecules impinging on the target surface, along with data related to code performance. Using procedures developed in standard contamination analyses, along with many worst-case assumptions, the cumulative upper-limit level of volatile organic deposits on HALOE's aperture over the instrument's 35-month nominal data collection period is estimated at about 13,350 A

    Investigation of Transient Gas Phase Column Density Due to Droplet Evaporation

    Get PDF
    Analytical expressions are developed for estimating column density near a rapidly evaporating droplet along general paths. The influence for instantaneous evaporation is created first as a limiting case, where the peak value occurs at the time it takes a wave of vapor to reach the closest point along the optical path traveling at its most probable thermal speed. Next the case for finite-period evaporation is evaluated for constant conditions. Compared to the instantaneous case, peak column density occurs shortly after droplet extinction at a lower intensity. A new mathematical function is discovered that solves the integrals associated with this case. Finally, ways to account for droplet motion and changes in evaporation rate with size and temperature are discussed

    Procedure for Adapting Direct Simulation Monte Carlo Meshes

    Get PDF
    A technique is presented for adapting computational meshes used in the G2 version of the direct simulation Monte Carlo method. The physical ideas underlying the technique are discussed, and adaptation formulas are developed for use on solutions generated from an initial mesh. The effect of statistical scatter on adaptation is addressed, and results demonstrate the ability of this technique to achieve more accurate results without increasing necessary computational resources

    Braided Hopf Algebras and Differential Calculus

    Full text link
    We show that the algebra of the bicovariant differential calculus on a quantum group can be understood as a projection of the cross product between a braided Hopf algebra and the quantum double of the quantum group. The resulting super-Hopf algebra can be reproduced by extending the exterior derivative to tensor products.Comment: 8 page

    Application of ASTM E-1559 Apparatus to Study H2O Desorption

    Get PDF
    The NASA James Webb Space Telescope project identified a need to measure water vapor desorption from cryogenic surfaces in order to validate predictions of spacecraft design performance. A review of available scientific literature indicated no such measurements had been reported below 131 K. Contamination control personnel at NASA Goddard Space Flight Center recognized the possibility they readily possessed the means to collect these measurements at lower temperatures using an existing apparatus commonly employed for making outgassing observations. This presentation will relate how the ASTM E-1559 Molekit apparatus was used without physical modification to measure water vapor sublimation down to 120 K and compare this data to existing equilibrium vapor pressure models
    corecore