Transient Plume Model Testing Using LADEE Spacecraft Attitude Control System Operations

Michael Woronowicz, SGT Inc.

Contamination, Coatings, and Materials Workshop NASA Goddard Space Flight Center 12 – 14 July 2011

LADEE Spacecraft

Introduction (2 of 3)

- Lunar Atmosphere Dust Environment Explorer (LADEE)
 - Collect data regarding lunar atmosphere (gases, dust) before alteration due to future exploration activities
- Features include
 - Operational period ~ 100 days
 - Variety of orbits (elliptical, circular)
 - Nominal = 50 km, circular
 - As low as 20 km, circular
 - Variety of orientations used for making measurements, communicating with Earth
- Lunar atmosphere is so rarefied it's referred to as an "exosphere"
 - Essentially free-molecule conditions

Introduction (3 of 3)

- Instruments include Neutral Mass Spectrometer (NMS)
 - Designed to measure concentration levels of species up to 150 amu
 - Design is sensitive enough to detect ~100 molecules/cm³
- NMS measurement sensitivity drives many LADEE contamination control requirements
 - Causes consideration of unusual scenarios
 - Outgassing
 - Attitude Control System (ACS) thruster plume influence

Schematic Diagram

Objective

- Learned it is conceivable NMS could measure gases from surface-reflected ACS plume
 - At minimum altitude
 - Measurement would be maximized
 - Gravitational influence minimized ("short" time-of-flight situation)
 - Could use to verify aspects of thruster plume modeling
- Model the transient disturbance to NMS measurements due to ACS gases reflected from lunar surface
- Observe evolution of various model characteristics as measured by NMS
 - Species magnitudes, TOF measurements, angular distribution, species separation effects

Test Case Conditions (1 of 2)

- Minimum altitude (20 km, circular)
- NMS faces ram direction
- Orbital velocity = 1.67 km/s
 - Lunar Radius = 1737 km
 - Lunar Gravitational Acceleration $g = 1.62 \text{ m/s}^2$
- Featureless, impermeable, daylight lunar surface
 - $-T_{\rm s} \approx 380 \ {\rm K}$
- Forward-facing ACS thruster pair
 - Operates for 1 s
 - Orientation = 20° below horizontal
 - Ignore changes in spacecraft altitude
- Particularly interested in water vapor influence

Test Case Conditions (2 of 2)

- ACS Thrusters consist of 5 lb_f bipropellant units
 - Monomethylhydrazine (MMH) fuel
 - MON-3 (mixed oxides of nitrogen, 3% nitric oxide in N_2O_4)
 - Exit conditions include $V_e \approx 3.0$ km/s, $T_e \approx 550$ K
 - Approximate dominant species:

Species	Mass Fraction			
N_2	0.43			
H ₂ O	0.29			
СО	0.18			
CO_2	0.086			
H_2	0.016			

Gravitational Effect

- Time to reach lunar surface based on $V_{\rm e}$
 - 19.2 s, ballistic
 - 19.5 s, radial
- Time for water vapor normally-reflected from lunar surface at T_s to reach 20 km
 - 31.1 s, ballistic
 - 29.9 s, radial
- For the purposes of this study, can ignore influence of lunar gravity if period under consideration is limited to approximately one minute

Model Formulation

• Find particular solution to collisionless Boltzmann equation for source Q_1 :

$$\frac{\partial f}{\partial t} + \boldsymbol{v} \cdot \frac{\partial f}{\partial \boldsymbol{x}} + \boldsymbol{g} \cdot \frac{\partial f}{\partial \boldsymbol{v}} = Q_1$$

where

$$Q_{1} = \frac{2\beta^{4}}{A_{1}\pi} \delta(\mathbf{x}) \dot{m}(t) |\mathbf{v} \cdot \hat{\mathbf{n}}| \exp\left(-\beta^{2} (\mathbf{v} - \mathbf{u}_{e})^{2}\right)$$

and

$$A_1 \equiv e^{-s^2 \cos^2 \phi_e} + \sqrt{\pi} s \cos \phi_e (1 + \operatorname{erf} (s \cos \phi_e))$$

Model Development

- Simplifies for axisymmetric conditions
 - $\phi_{\rm e} = 0$ $\phi = \theta$
- other definitions:

$$s \equiv \beta u_{\rm e} = \frac{u_{\rm e}}{\sqrt{2RT_{\rm e}}}; \quad z \equiv \alpha - w; \quad \alpha \equiv \beta r/t; \quad w \equiv s \cos \theta$$

Model Development—Pulse

- Plume equations when mass flow rate is described by $\dot{m} = \Delta m \delta(t)$
 - Angle between incident plume and impinged surface given by ψ

$$\rho(\mathbf{x},t) = \frac{2\Delta m \alpha^4 \cos \phi}{A_1 \pi r^3} e^{-(w-s)^2} e^{-z^2}; \quad \dot{\Phi}(\mathbf{x},t) = \frac{\rho r}{t} \cos \psi$$

Model Development—Unconstrained

• Earlier, Narasimha developed model describing unconstrained expansion:

$$Q_{\rm N} \equiv \frac{\beta^3}{\pi \sqrt{\pi}} \delta(\mathbf{x}) \dot{m}(t) \exp\left(-\beta^2 (\mathbf{v} - \mathbf{u}_{\rm e})^2\right)$$

• Density response, pulse mode:

$$\rho(\mathbf{x},t) = \frac{\Delta m \alpha^3}{\pi \sqrt{\pi} r^3} e^{-(w-s)^2} e^{-z^2};$$

• Format of other expressions similar to constrained case

$$\dot{\Phi}(\boldsymbol{x},t) = \frac{\rho r}{t} \cos \psi;$$

Approach

- ACS thruster firings modeled using single sources
- Determine subsequent transient density and species mass fluxes across representative lunar surface for each timestep
- Use mass conservation
 - assume flux in = flux out for each species
 - Each surface node becomes source for diffusely-reflected material at T_s for times beyond current timestep ("complementary timesteps" out to 1 min.)
 - Fluxes reaching NMS along its path come from surface nodes ahead of LADEE
 - Spacecraft body blocks influence at ram-facing NMS sensor head
- Possible to create more sophisticated mass conservation statements
 - Effects of lunar regolith permeability, gas-surface interactions

Results

- Observe free expansion development
- Logarithmic density contour maps for surface impingement
 - Compare Q_1 vs. Q_N
 - Effect of $T_{\rm e}$
- Estimates for transient species concentrations along NMS path
 - Similar comparisons

Free Expansion

Surface Interaction Development

Click on Picture

Results—Surface Density, Source Model Effects

Nozzle Exit Temperature T_e Influence

- Elapsed time for peak species mass fluxes to reach lunar surface occurred quicker than expected based on $V_e \sin 20^\circ$
- Time derivative of mass flux equations ($\Phi \propto t^{-D}$) indicates

$$t_{\max \text{ flux}} = \frac{2\beta r}{w\left(1 + \sqrt{1 + \frac{2D}{w^2}}\right)}$$

- For w = s on the plume centerline, $t_{\max \text{ flux}} \rightarrow r/V_e$ as $s \rightarrow \infty$
- For finite *s*, this period is always shorter

- Consequence of thermal energy component

• Create new Q_1 case using arbitrarily low temperature (55 K vs. 550 K)

Results—Surface Density, *Q*₁ **Exit Temperature Effects**

Results—Peak Surface Fluxes

Item [cgs units]	Peak Flux, Q_1	Elapsed Time	Peak Flux, $Q_{\rm N}$	Elapsed Time	Peak Flux, Q_1 , low- T_e	Elapsed Time
ho [g/cm ³]	2.7e-18	15	2.6e-18	15	1.3e-17	20
$N_2[g/cm^2/s]$	1.7e-13	14	1.6e-13	14	5.8e-13	19
H ₂ O	8.6e-14	12	7.9e-14	12	2.2e-13	19
CO	7.1e-14	14	6.7e-14	14	2.4e-13	19
CO ₂	5.1e-14	15	4.9e-14	15	2.2e-13	20
H_2	2.5e-15	6	1.9e-15	6	1.3e-15	13

NMS Species Density Estimates, Source Model Effects

NMS Species Density Estimates, Exit Temperature Effects

Concluding Remarks

- Appears possible NMS could measure surface-reflected gases from ACS operations
- Comparing Q_1 and Q_N solutions
 - Plume interactions with surface largely similar
 - Differences more pronounced for surface-reflected molecular distribution
 - Ability to distinguish levels of fidelity depend on possibly subtle distinctions
- Strong dependence on speed ratio (effective nozzle exit temperature)
 - Peak values of species fluxes
 - Time to reach max flux values
- Possible to revisit scenario to include effects of permeable lunar regolith, surface interaction
- Related scenario, relevant for ONIMS instrument on OSIRIS-REx asteroid mission