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LADEE Spacecraft

2



Introduction (2 of 3)
• Lunar Atmosphere Dust Environment Explorer (LADEE)

– Collect data regarding lunar atmosphere (gases, dust) before 
alteration due to future exploration activities

• Features include
– Operational period ~ 100 days
– Variety of orbits (elliptical, circular)

• Nominal = 50 km, circular
• As low as 20 km, circular 

– Variety of orientations used for making measurements, 
communicating with Earth

• Lunar atmosphere is so rarefied it’s referred to as an “exosphere”
– Essentially free-molecule conditions
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Introduction (3 of 3)

• Instruments include Neutral Mass Spectrometer (NMS)
– Designed to measure concentration levels of species up to 150 

amu
– Design is sensitive enough to detect ~100 molecules/cm3

• NMS measurement sensitivity drives many LADEE 
contamination control requirements
– Causes consideration of unusual scenarios

• Outgassing
• Attitude Control System (ACS) thruster plume influence
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Schematic Diagram
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Objective
• Learned it is conceivable NMS could measure gases from 

surface-reflected ACS plume
– At minimum altitude

• Measurement would be maximized
• Gravitational influence minimized (“short” time-of-flight situation)

– Could use to verify aspects of thruster plume modeling 
• Model the transient disturbance to NMS measurements due to 

ACS gases reflected from lunar surface
• Observe evolution of various model characteristics as 

measured by NMS
– Species magnitudes, TOF measurements, angular 

distribution, species separation effects
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Test Case Conditions (1 of 2)

• Minimum altitude (20 km, circular)
• NMS faces ram direction
• Orbital velocity = 1.67 km/s

– Lunar Radius = 1737 km
– Lunar Gravitational Acceleration g = 1.62 m/s2

• Featureless, impermeable, daylight lunar surface
– Ts ≈ 380 K

• Forward-facing ACS thruster pair
– Operates for 1 s
– Orientation = 20° below horizontal
– Ignore changes in spacecraft altitude

• Particularly interested in water vapor influence
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Test Case Conditions (2 of 2)
• ACS Thrusters consist of 5 lbf bipropellant units

– Monomethylhydrazine (MMH) fuel
– MON-3 (mixed oxides of nitrogen, 3% nitric oxide in N2O4)
– Exit conditions include Ve ≈ 3.0 km/s, Te ≈ 550 K
– Approximate dominant species:
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Species Mass Fraction
N2 0.43

H2O 0.29
CO 0.18
CO2 0.086
H2 0.016



Gravitational Effect

• Time to reach lunar surface based on Ve

– 19.2 s, ballistic
– 19.5 s, radial

• Time for water vapor normally-reflected from lunar 
surface at Ts to reach 20 km
– 31.1 s, ballistic
– 29.9 s, radial

• For the purposes of this study, can ignore influence of 
lunar gravity if period under consideration is limited 
to approximately one minute
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Model Formulation

• Find particular solution to collisionless Boltzmann 
equation for source Q1:
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Model Development

• Simplifies for axisymmetric conditions
– φe = 0
– φ = θ

• other definitions:

;
2 e

e
e RT

uus =≡ β θcossw ≡;wz −≡ α ;trβα ≡

1
3

2

x, 
v

u
e

source
location

Axis along exit normal n

θ
φ

φe



12

Model Development—Pulse

• Plume equations when mass flow rate is described by
– Angle between incident plume and impinged surface given 

by ψ
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Model Development—Unconstrained

• Earlier, Narasimha developed model describing unconstrained 
expansion:

• Density response, pulse mode:

• Format of other expressions similar to constrained case
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Approach

• ACS thruster firings modeled using single sources
• Determine subsequent transient density and species mass fluxes 

across representative lunar surface for each timestep
• Use mass conservation

– assume flux in = flux out for each species
– Each surface node becomes source for diffusely-reflected material at Ts for 

times beyond current timestep (“complementary timesteps” out to 1 min.)
– Fluxes reaching NMS along its path come from surface nodes ahead of LADEE

• Spacecraft body blocks influence at ram-facing NMS sensor head

• Possible to create more sophisticated mass conservation statements
– Effects of lunar regolith permeability, gas-surface interactions
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Results

• Observe free expansion development
• Logarithmic density contour maps for surface impingement

– Compare Q1 vs. QN

– Effect of Te

• Estimates for transient species concentrations along NMS path
– Similar comparisons
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Free Expansion
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Surface Interaction Development
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Results—Surface Density,
Source Model Effects
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Nozzle Exit Temperature Te Influence 

• Elapsed time for peak species mass fluxes to reach lunar surface 
occurred quicker than expected based on Ve sin 20°

• Time derivative of mass flux equations (Φ ∝ t –D) indicates

• For w = s on the plume centerline, tmax flux → r/Ve as s → ∞
• For finite s, this period is always shorter

– Consequence of thermal energy component
• Create new Q1 case using arbitrarily low temperature (55 K vs. 550 K)
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Results—Surface Density, Q1
Exit Temperature Effects
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Results—Peak Surface Fluxes

Item
[cgs units]

Peak Flux, 
Q1

Elapsed 
Time

Peak Flux, 
QN

Elapsed 
Time

Peak Flux, 
Q1, low-Te

Elapsed 
Time

ρ [g/cm3] 2.7e-18 15 2.6e-18 15 1.3e-17 20
N2 [g/cm2/s] 1.7e-13 14 1.6e-13 14 5.8e-13 19

H2O 8.6e-14 12 7.9e-14 12 2.2e-13 19
CO 7.1e-14 14 6.7e-14 14 2.4e-13 19
CO2 5.1e-14 15 4.9e-14 15 2.2e-13 20
H2 2.5e-15 6 1.9e-15 6 1.3e-15 13
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NMS Species Density Estimates,
Source Model Effects
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NMS Species Density Estimates,
Exit Temperature Effects
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Concluding Remarks

• Appears possible NMS could measure surface-reflected gases from 
ACS operations

• Comparing Q1 and QN solutions
– Plume interactions with surface largely similar
– Differences more pronounced for surface-reflected molecular distribution
– Ability to distinguish levels of fidelity depend on possibly subtle distinctions

• Strong dependence on speed ratio (effective nozzle exit temperature)
– Peak values of species fluxes
– Time to reach max flux values

• Possible to revisit scenario to include effects of permeable lunar 
regolith, surface interaction

• Related scenario, relevant for ONIMS instrument on OSIRIS-REx
asteroid mission
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