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Abstract

A technique is presented for a(tat)ting compulat, iona] meshes used in

the (_2 version of the direct simulation M()nt.e (:arl{)nlet.hod. The l)hysica]

ideas underlying the technique are discussed, and adaptation fi)rmulas are

develol)ed for use on solutions generated from an initial mesh. The effect of

statistical scatter ()n adaptalion is addressed, and results denl(,nstrate the

ahility of this technique t,)achiew" niore accurate results without, incr,'asing

necessary coillpnta!i,,nal resources.

Int ro duct ion

In recent, years, stalislical l>article nielhods, such as the direct sin>

ulation Monte (:arlo niethod (I)SM(_), haw" I)econie a popular approach

fl,r simulating high-speed, rarefied gas flows. 1-4 However, their widespread

use is ofl, en hampered by heavy deniands on conlputational resources, such

as meuiory and (;t'U time. In addition, investigators must often use their

initial results as a guideline for obtahfing more accurate answers I)y modi-

fying initial spatial or temporal resolution. This iterative process increases

the amouzit of user time, and often the amount of colnputational resources,

necessary to compute a11 accurate solution.

The purt)ose of this investigation is to examine algorithnis for automat-

ically adapting grids to initial DSM(? sohitions using a number of seemingly

c()ntlicting criteria for accuracy. With such procedures, we expect to reduce

I[le nieniory, (:Pll tinle, and user t.iine necessary to achieve satisfactory h'v-

els of accuracy. The algorithnis examined here are conlpatible with t]le (;2

version of the DSMC method.
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126 M S. WORONOWICZ ET AL.

Discussion

From experience with DSM(', simulations, users haw" developed accu-

racy criteria with respect to grid resolution. Whih" it. is unnecessary to obey

these rules everywhere at. all times, following them provides some contidence
that the final results are as accurate a.s the method permits. 5

()ne rule maintains that in viscous layers, shock waves, and shear

layers, where macroscopic propert.ies undergo strong changes, cell spacing

along these gradients should not exceed one local mean free path length, A.

This ensures that properties transported across these gradients through
interpart.icle collisions art, captured properly.

Another rule requires that near surfaces, (:ell spacing normal to the

body shouhl also be shorter than h. This is because in cerlain areas, such

a.s in the vicinity of adiabatic surfaces, ttowtMd gradients may Iw w,ry small,

and the first rule is not stringent enough to adequately capture tlowfiehl
physics.

Adaptation Methodology

Intuitively, it appears that functions advantageous for grid adaptation

shouhl have properties pertinent to important aspects of the flowiiehl as

well as having properties advantageous to fulfilling the rules cited above.

Regarding the first criterion, areas where strong gradients occur are often
characterized by a non negligible "gradient Knudsen number," Kn_,. _ The

reciprocal length scale (1,) -1 of this Knudsen number is comprised of the

local change in some flow variable ¢, along its direction of strongest change (,

divided by the local value of the flow variable itself

10(_ [ i) In c_

(;radient length scales appear t.o be desirable quantities t() use a.'_ physical

length scales for grid adaptation. As just noted however, variables chosen
for a, such as density, velocity, or temperature, while important in much of

the flowfield, may not accurately retlect changes near certain surfaces. To

satisL' the second criterion, we use h as another physical length scale for

grid adaptation. Presently A is computed using the equilibrium relation-
ship. Although this formula is trot valid where translational nonequilibrium

exists, it. estimates h well _'nough for initial adaptation I)urposes at this

stage of the investigation.

Using reciprocals of these physical length scales, we corrstruct functions

to adapt initial grids from the solutions they generate. To date, the regions

comprising the flowfield are adapted in one direction only, using either
rows or columns of cells in the body-fitted mesh. in Fig. 1, these directions

are denoted by ,_ and q, respectively. Gradients are calculated using values

contained in ('ells and their nearest neighbors in the direction of adaptation.

This approximation creales inaccuracies in t.erms of obtaining true gradients
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Fig. 1 Schenlatic rel)resentati,m

of DSMC domain mesh.

wit, h respect to a reference franm for the overall flowfieht, but it pr(,vides a

relative measure of them along the direction of adaptation. Alt.h()ugh the

following 1)rocedures are discussed in terlns of cohllnll adaptation, the same

al)plies f.r row adaptation as well.

An adaptation function F is generated from the absohlte reciprocal val-

ues of these lengths hy computing their cumulative Slllil i.lp through each

cell in the direction of the grid adaptation. This function increases mono-

tonically_ and has its steepest slopes where the inverse lengths are greatest..

Typical behavior of F is shown in Fi R . 2c. For column adaptat.ion, F is

a flmct.ion of q, and for a constant number of cells per column, cell spac-

ing Aq is altered through the adaptation process by inverting the flmction.

In this manner, the new cell spacing A_ 1' is Riven by equal increments of/_,

and A71' will be minimized where the slope of/_ is steepest. A typical value

in a term for altering A_ 1 within a column of cells in an 1 x J matrix is

computed the following way

F(m,j;l_)=_-_A_l(i'J)/_-_ ATl(i'j)
i=1 lo(i,j) i=1 l,_(i,j)

(2)

As the subscripts indicate, each column of cells ha_s a separate fimction _0

for adaptation. If .f' is normalized by its final value, as in gq. (2), so that

values lie between zero to unity, a number of such functions, using different

variables for a, may be combined to create a composite function G. Addi-

tionally, the individual terms of this coml)osite function may be weighted

so that. they dominate (; where they are strongest.

These idea.,_ were t.ested f_,r rarefied flow over the front half of a cylinder.

Fig. 2a shows the initial grid and geometry used in the simulation, which

took advantage of flowfield symmetry about the stagnation streamline. The

freestream Math, Reynohls, and Knudsen number wdues were M.,,_ = 3.1,

t¢,c_,_ = 8S.li, and lx'n,._ = 0.052, respectiv,'ly, based on cylind,'r ra(lius,

and the cylinder's surface temperature was equal to the freest.ream stagna-
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Fig. 2 Flow over cyliIlder, Moo = 3.1, Re_,_ = 88.6, h'n_._ = 0.052,

T_o/T_ = 2.92: (a) original mesh, (b) density contours [kg/m3], (c) varl-
ation of /_ & ¢_; for cells nearest centerline.

tion temperature (Too = 300 K, Tw = To = 877 K). Density contours from

the results are shown in Fig. 2b. A composite function (_; was developed to

emphasize tight cell spacing near the surface and through the shock wave

to adequately capture surface fluxes and flowfleld gradients through the

shock wave. The function adapted cell spacing AT1 nominally normal to

the cylinder's surface, and was weighted towards A near the surface and

towards l., the gradient length scale based on number density n, near the

outer boundary. The specific form of (:1 became

G(m,j) = (_(m'J--)) z f'(m,j;l,)
\ ,l(l,j)

)+ L- F(.,,j;:9 (3)
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Fig. 3 Meshes adapted to solution depicted ill Fig. 2: (a) adapted to

Eq. (3) without filtering, (b) same, with slight FFT filtering.

The weighting factor was controlled by the free parameter/3, an exponent

whose value was set. to unity for linear weighting. Tile variation of (; and

its constituents with distance away from the cylinder near the stagnation

streamline are shown in Fig. 2c.

Fig. 3a shows the adapted mesh resulting from application of Eq. (3)

to the initial results. C,omparing Fig. 3a and Fig. 2a, it is apparent that

mesh lines are now strongly biased towards the location of the shock wave

and near the cylinder's surface in the stagnation region.

Handling of Statistical Fluctuations

Fig. 3a also reveals a complication in the grid adaptation process. Note

the "herringbone" pattern resulting from the statistical nature of particle

methods, which is accentuated in regions of large In. Cell-averaged flowfie]d

properties have a certain level of statistical scatter, or "noise" associated

with them. In order to shorten the iteration process, we wish to adapt the

mesh to solutions with small levels of sampling, which magnifies the effects

of statistical scatter. This problem is further aggravated by adapting to

flowfield gradients, obtained by differencing statistically noisy values.

Efforts to use least-square fits of polynomials and conic sections to the

adapted grid lines proved ineffective. Such fits shifted tight grid spacing

away from certain areas where it was physically needed. We also evaluated

different filters to reduce the noise in the data set. and/or the altered mesh.

The)' were: centrally weighted averaging, median filt.ering, e' and fast fourier

transform (FFT) filtering/Of these, FFT filtering has been the most effec-

tive at reducing the high-frequency noise in our data sets. However, it can
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produce low-frequency variations in values of data sets or in grid spacing,

sometimes shifting tight grid spacing away from where it is needed Nev-

ertheless, we retained it as a tool for producing acceptable grids. Fig. 3b

shows the result of applying FFT filtering to the mesh depicted in Fig. 3a.

The most successful method for reducing statistical scatter encountered

thus far resulted from observations concerning /5 and (). These functions

adapt to data in only one direction, and for column adaptation each cohmm

of cells is adapted independently. There is no regard for the fact that final

values the denominators receive before normalization vary across columns.

In Fig. 4, the values of/5 denominators for each column of the simulation

depicted in Fig. 2 are shown. The first column represents cells closest.

to the flowfield centerline, and the last column represents those nearest

the exit plane. Such variation depends on mesh geometry, over which F

denominators may vary widely. When /_' or (; is used where no strong

gradients exist, the functions tend to adapt to the spiky noise itself. We

preferred preserving features of the original grid where this occurs.

A variable coefficient F(I,j; I_) was created for/5, equal to the ratio of

the denominator of F for each column to the maximum value of/5 denom-

inators across all columns. The unitary complement of this coefficient then

multiplies _AT//q, the incremental arc length of the original grid itself.

The coefficient F(I,j; l_) and the modified fimction /_ are given by

F(I,j;I_) -- _ l_,(i,j) / i=1 l_,(i,j) /,_
(4)
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Fig. 4 Variation of P denominators across columns for solution de-

picted in Fig. 2.
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alld

i=1 q(l,j)
(s)

Since F ranges from zero to ,me, the impact of individual F variations _m

grid spacing are de-emphasized along columns where their summalions are
relatively small. Again, F functions based on different variables may be
combined to create comi)osite fimct.ions, herein denoted by ().

Re.suits

In Fig. 5a, we show an initial grid consisting of four separate regions,

once again for flow over a cylinder. In this example, the freestream con-

ditions consisted of M_ = 6.0, Re,,_ = 684, Kn_,_ = 0.013, and 7_
= 63 K. The surface temperatnre was 7;, = 300 K. Since the overall govern-

ing Knudsen number places this simulation in the near-continuum regime,

multiple regions enhanced resolution in the vicinity of the bow shock and
in the viscous region near the surface. Simulation results are qualitatively

similar to those depicted in Fig. 2b. We fabricated the grid shown in Fig. 5b

using the following composite flmction (-;, based on 1,_ and A

(";(re, j) = ( q(m'j)5_ "7/-_,3_ ) I'(I,j;t,,) F(m,j;l,,)

\ ,_(I,j) r(:,a;a) P(m, j;,_)

+ (2- r( l,j;,_)- r( i,j;,_)) _-_ A''(i'j)
i=1 71(I,J)

(6)

By using )_ as one of the variables for adaptation, we expected to reduce

in the number of cells violating the rule regarding grid spacing versus ,_ in

areas of enhanced resolution. Diagnostics in the adaptation code confirm

this feature for this case. In the initial solution, the fraction of cells violating

this rule was 0.1% in Region 1 (near the surface), and 24% in Region 3

(through the shock wave). It should be noted that few of these cells grossly

violated the rule, however. After repeating the simulation on an adapted

grid without FFT smoothing for approximately the same number of steady-

state timesteps, this rule was violated only 0% and 9% in those respective

regions.

lip to this point, the simulations presented here have arguably had

adequate resolution before undergoing grid adaptation. Our final example

demonstrates that. this adaptation process can increase solution accuracy

for a given grid with a fixed number of cells and regions even when the initial
solution suffera from inadequate resolution. This case stems from a series

of simulations originally run in conjunction with a DSMC investigation of a
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Fig. 5 Multiple-region mesh for calculating flow over cylinder, M_

---- 6.0, Rer,oo ---- 684, h'n_.oo = 0.013, _ T_/T_ ---- 4.76. Only every fifth

"tangential" grid line shown for clarity: (a) original mesh, (b) mesh

adapted to initial solution using Eq. (6), without filtering.

shock-shock interaction problem. 1 Data from the interaction problen, was

used to model the shear layer that develops beyond the point where the

shock waves intersect. The simulation was run for three different levels

of resolution approximately normal to the flow direction. The medium

resolution grid has four times as many cells in the y-direction as the coarsest

mesh, and the highest resolution grid has sixteen times as many ceils in that

direction as the coarsest mesh. It is considered that only the final mesh

had adequate resolution. 1 Fig. 6 depicts velocity magnitude contours from

these high-resolution results.

-1 ×10 "3

I

-1×1 ,.3
I I

-5×10 '_
0 115×10.1I I _X[m ]

Fig. 6 Shear flow generated using conditions from separate shock-shock
interaction problem. Velocity magnitude contours [m/sec].
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Fig. 7 Meshes used to calculate flowfleld depicted in Fig. 6: (a) original

mesh, (b) mesh adapted to initial solution using modified version of

Eq. (6) with slight FFT filtering.

In Fig. 7a, we show the initial grid used in the coarsest simulation.

Investigating the effects of different length scales on adaptation in this

particular case led us to the grid depicted in Fig. 7b. This was generated

using a composite function G similar to that described in Equation (6),

using length scales based on l_ and ,_. The only difference was to replace

the factor

,1(I,j) /

with 1/2 because this flowfield did not require the type of weighting desired

for the bounded flowfields depicted earlier. The length scale based on A was

included to dampen noisy contributions from IN.

One run was generated using the grid adapted to the coarsest mesh

results. Another run was generated using a grid adapted to the medium
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Fig. 8 Profiles of <pue> for different meshes used to calculate flow-

field of Fig. 6 at x -- 0: (a) unadapted/coarse, (b) adapted/coarse,

(c) unadapted/medium-resolution, (d) adapted/medium-resolution,
and (e) unadapted/high-resolution.

resolution mesh using the same function (_-;. Contour plots of the adapted

grid results appeared virtually identical to their respective original cases.

However, as depicted in Fig. 8, profiles of the energy flux <pue> at a plane

across x = 0, a location containing some of the steepest gradients, demon-

strate the relative effectiveness of the grid adaptation technique. The peak

flux from the solution on the coarse adapted grid is 15% higher than that

from the plain coarse grid, and the solution from the medium-level adapted

grid shows a peak energy flux 4% higher than its progenitor. Also, the gra-

dients captured by the adapted grids are slightly steeper than their respec-

tive original cases, and occur over a narrower band. The full-width/half-

maximum value of <pue> for the coarse adapted grid is 86% of the original

coarse-grid solution, and that for the medium adapted grid is 96% of the

unadapted medium-resolution result. In both peak flux and flux width, the

trend of data is toward the high-resolution result when going from original

to adapted-grid solutions.

Considerations for Future Work

Although we have addressed the rules mentioned in the Discussion

section, we have made no provision guaranteeing an adequate number of

particles per cell for proper collision mechanics. Additionally, for optimum

use of computational resources, we desire roughly equal numbers of parti-

cles per cell. This rule conflicts with cell resolution guidelines, since the

local cell population is proportional to the product of ]oca[ density and cell

volume. The conflict can be resolved somewhat by using variable particle
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scah, faclcws, a concept already extended by Olynick t,o the limit where

each cell is tr,-ated as a separate region. _ It. may be desirable to comlfine

curren! a(lal)tiw_ uwsh procedures with such an approach.

The last, example illustrates that in adapting to all initial solution with

grossly inadequate resolution, the level of inlprovemen¢ is constrained by

tixing the number of ceils and regions to thos, _ of l.h¢, initial s_)lulion. It.

w,mld I.' useful t,) aut._mmtically incr_ase _)r d(wreas¢ _ ceil resolution by

changing lhe mmfl)er of cell rows or columns allott.ed to a given region

based on the initial solution. It may ew_n be advantageous I.o relax the

cc,nstraints <m the lCwal.ions of certain outer boundaries (ahead of ;t bow

shock into the freesteam, fl_r example).

It. wouh! also be advantageous to adapt rows and columns of cells

simultaneously for enhanced ability to capture governing flowfield l)henom -

ena, within l he c(,nstraints imposed by proper collision mechanics. Finally,

restarting calculaticms from existing solutions on adapted grids, rat.her t.ha,l

beginning m'w computations from scratch, wouhl greatly' reduce the alllOlltlt

_f linte spent achieving w'w steady-state sc)lul.i(ms.

ConclusiollS

W," have, begun develot)ing a technique for adapting I)SM(', meshes to

flowtield solutions. The functions used for adapting these grids are based

on hmgth scales that are physically meaningflfl in terms ofsat.isfying certain

empirical rules usually fulfilled manually. The formulation of these adap-

tation functions is flexible enough that they may be used for unbounded

flowfiehts as well as flows past bodies. Use of this technique can improve

resolution without, requiring greater resources in terms of numbers of cells

and particles, or the extra (;PU time and memory necessary to solve a

larg;c_r siJJmlati,m.
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