190 research outputs found

    Comparison of Bioelectrical Impedance Analysis Instruments and Skinfold Calipers in the Determination of Percent Body Fat in Division I Tennis Players

    Get PDF
    Body composition, specifically percent body fat, is an important measurement performed in both the clinical and educational settings. Very reliable and accurate systems for measuring body composition are available for use, but they are time-consuming and very expensive, such as dual x-ray absorptiometry and hydrostatic weighing. Attempting to find technology that is inexpensive and easy to operate in determining body composition is a difficult task. However, bioelectrical impedance analysis machines offer the possibility of fulfilling this need in the educational and clinical settings. The question that needs to be answered is whether the bioelectrical impedance analyzers are a reliable and accurate tool in determining body composition in the clinical or educational setting. In this research, there will be three different trial sessions. Each session will consist of four different body composition tests. The results of these tests will be analyzed using Pearson’s r correlation to show statistical significance between trials and instruments

    Former College Athletes and Their Persistence in Medical School: A Phenomenological Study

    Get PDF
    The purpose of this hermeneutic phenomenological study was to understand the experiences of former college-athletes who persist in medical school. The theories that guided this study were the achievement goal theory by Nicholls and the self-determination theory by Deci and Ryan, as each theory relates to the motivation to succeed in academics, as well as athletic participation. Eleven participants were purposefully selected to address the question: How do former college student-athletes describe their experiences in relation to the attributes and characteristics that allowed them to persist in medical school? The sub-research questions investigated certain experiences that may have helped them persist in medical school, the intersection of athletic motivation and medical school motivation, and their medical school experiences compared to their athletic experiences. This study attempted to provide the genuine voices of former college athletes who have persisted in medical school. Data was collected using document analysis, semi-structured interviews, a reflection essay, and focus groups. Data analysis was conducted in accordance with Moustakas, which included preparing and organizing the data, reducing the data into themes, and representing the data in a written form. Validity and trustworthiness were established by employing member checking, audit trails, and reflexivity. These student-athletes felt the experiences of playing a college sport aided them in their transition and their persistence in medical school. The research participants attributed this to their resiliency, their internal motivation, their ability to adapt, their regimented schedule, and ability to relate their medical school experience to their college athletic experience

    Automated Avocado Yield Forecasting Using Multi-Modal Imaging

    Get PDF
    Yield forecasting is a common technique utilized to predict the amount of fruit expected at harvest. Orchard managers forecast yield to predict future packaging requirements, labor requirements, and to make agricultural decisions to help improve future yields. In order to forecast yield, one must first count the number of fruit on a representative sample of trees. Next, one must use a model to predict the total yield expected given the number of fruit counted. However, as population and labor costs continue to increase, a need for automation grows. While research has explored automated yield forecasting for various fruits, there currently isn\u27t any research on automated avocado detection/forecasting. This project explored various methods to automate avocado detection in an orchard setting using computer vision. Additionally, this project constructed a model to predict the yield of avocados at harvest when after counting the current number of avocados earlier in the year. The computer vision pipeline plans to utilizes both thermal images and visible RGB images to make an avocado classifier. However, this system has currently shows the potential of thermal-based avocado detection at various times of the day, segmenting all avocados from the background. Next, this project will continue to utilize visible RGB images to further eliminate the background

    Author Correction: Task-dependent representations of stimulus and choice in mouse parietal cortex.

    Get PDF
    In the original version of this Article, the Acknowledgements section was inadvertently omitted. This has now been corrected in both the PDF and HTML versions of the Article

    Exosomes Mediate Zika Virus Transmission Through SMPD3 Neutral Sphingomyelinase in Cortical Neurons

    Get PDF
    The harmful effects of ZIKA virus (ZIKV) infection are reflected by severe neurological manifestations such as microcephaly in neonates and other complications associated with Guillain-Barre syndrome in adults. The transmission dynamics of ZIKV in or between neurons, or within the developing brains of the foetuses are not fully understood. Using primary cultures of murine cortical neurons, we show that ZIKV uses exosomes as mediators of viral transmission between neurons. Cryo-electron microscopy showed heterogeneous population of neuronal exosomes with a size range of 30-200 nm. Increased production of exosomes from neuronal cells was noted upon ZIKV infection. Neuronal exosomes contained both ZIKV viral RNA and protein(s) that were highly infectious to naive cells. RNaseA and neutralizing antibodies treatment studies suggest the presence of viral RNA/proteins inside exosomes. Exosomes derived from time- and dose-dependent incubations showed increasing viral loads suggesting higher packaging and delivery of ZIKV RNA and proteins. Furthermore, we noted that ZIKV induced both activity and gene expression of neutral Sphingomyelinase (nSMase)-2/SMPD3, an important molecule that regulates production and release of exosomes. Silencing of SMPD3 in neurons resulted in reduced viral burden and transmission through exosomes. Treatment with SMPD3 specific inhibitor GW4869, significantly reduced ZIKV loads in both cortical neurons and in exosomes derived from these neuronal cells. Taken together, our results suggest that ZIKV modulates SMPD3 activity in cortical neurons for its infection and transmission through exosomes perhaps leading to severe neuronal death that may result in neurological manifestations such as microcephaly in the developing embryonic brains

    Evaluation of Social Impact of Traffic Noice in Amman, Jordan

    Full text link
    Few road traffic studies were conducted in Jordan, but the issue is drawing an increasing attention due to its growing magnitude and various impacts as a result of the high increase in vehicular traffic. This study further investigates the issue with the aim of providing an understanding of its social impact on residents of Amman, the capital of Jordan. Traffic noise levels were measured at selected locations along urban arterials and a social survey was performed to examine the reactions and attitudes of the neighboring residents towards these levels of traffic noise. The survey included social characteristics of individuals, and their attitudes towards traffic noise, and how it impacted their daily activities. A predesigned questionnaire was used for this purpose which included questions to evaluate the awareness of respondents of the problem and its environmental and health impacts. The financial impact that residents perceive of noise and the need for attenuation measures were also addressed. The results of the study also revealed that the impact of traffic noise on people can cause annoyance while performing daily activities were 24% of respondents reported that they get annoyed by traffic while working, 49% while resting, 34% while talking to others, 31% while talking on the phone, 39% while reading, 38% while watching TV and 53% of respondents get annoyed while sleeping. The respondents have also pointed out the following effects of noise: twist in mood (53%), headache (36%), and difficulty in concentration (40%). About 57% of respondents think traffic noise reduces the value of their properties and a total of 31% are willing to sell their house at reduced cost. About 59% of respondents consider attenuation measures necessary, and in order to reduce the noise, about 54% of respondents were willing to pay for attenuation measures which reflects the public awareness of the issue magnitude

    Discovery of Exosomes From Tick Saliva and Salivary Glands Reveals Therapeutic Roles for CXCL12 and IL-8 in Wound Healing at the Tick-Human Skin Interface

    Get PDF
    Ticks secrete various anti-coagulatory, anti-vasoconstrictory, anti-inflammatory, and anti-platelet aggregation factors in their saliva at the bite site during feeding to evade host immunological surveillance and responses. For the first time, we report successful isolation of exosomes (small membrane-bound extracellular signaling vesicles) from saliva and salivary glands of partially fed or unfed ixodid ticks. Our data showed a novel role of these in vivo exosomes in the inhibition of wound healing via downregulation of C-X-C motif chemokine ligand 12 (CXCL12) and upregulation of interleukin-8 (IL-8). Cryo-electron microscopy (cryo-EM) analysis revealed that tick saliva and salivary glands are composed of heterogeneous populations of in vivo exosomes with sizes ranging from 30 to 200 nm. Enriched amounts of tick CD63 ortholog protein and heat shock protein 70 (HSP70) were evident in these exosomes. Treatment of human skin keratinocytes (HaCaT cells) with exosomes derived from tick saliva/salivary glands or ISE6 cells dramatically delayed cell migration, wound healing, and repair process. Wound healing is a highly dynamic process with several individualized processes including secretion of cytokines. Cytokine array profiling followed by immunoblotting and quantitative-PCR analysis revealed that HaCaT cells treated with exosomes derived from tick saliva/salivary glands or ISE6 cells showed enhanced IL-8 levels and reduced CXCL12 loads. Inhibition of IL-8 or CXCL12 further delayed exosome-mediated cell migration, wound healing, and repair process, suggesting a skin barrier protection role for these chemokines at the tick bite site. In contrast, exogenous treatment of CXCL12 protein completely restored this delay and enhanced the repair process. Taken together, our study provides novel insights on how tick salivary exosomes secreted in saliva can delay wound healing at the bite site to facilitate successful blood feeding

    Arthropod EVs Mediate Dengue Virus Transmission Through Interaction With a Tetraspanin Domain Containing Glycoprotein Tsp29Fb

    Get PDF
    Dengue virus (DENV) is a mosquito-borne flavivirus that causes dengue fever in humans, worldwide. Using in vitro cell lines derived from Aedes albopictus and Aedes aegypti, the primary vectors of DENV, we report that DENV2/DENV3-infected cells secrete extracellular vesicles (EVs), including exosomes, containing infectious viral RNA and proteins. A full-length DENV2 genome, detected in arthropod EVs, was infectious to naïve mosquito and mammalian cells, including human-skin keratinocytes and blood endothelial cells. Cryo-electron microscopy showed mosquito EVs with a size range from 30 to 250 nm. Treatments with RNase A, Triton X-100, and 4G2 antibody-bead binding assays showed that infectious DENV2-RNA and proteins are contained inside EVs. Viral plaque formation and dilution assays also showed securely contained infectious viral RNA and proteins in EVs are transmitted to human cells. Up-regulated HSP70 upon DENV2 infection showed no role in viral replication and transmission through EVs. In addition, qRT-PCR and immunoblotting results revealed that DENV2 up-regulates expression of a mosquito tetraspanin-domain–containing glycoprotein, designated as Tsp29Fb, in A. aegypti mosquitoes, cells, and EVs. RNAi-mediated silencing and antibody blocking of Tsp29Fb resulted in reduced DENV2 loads in both mosquito cells and EVs. Immunoprecipitation showed Tsp29Fb to directly interact with DENV2 E-protein. Furthermore, treatment with GW4869 (exosome-release inhibitor) affected viral burden, direct interaction of Tsp29Fb with E-protein and EV-mediated transmission of viral RNA and proteins to naïve human cells. In summary, we report a very important finding on EV-mediated transmission of DENV2 from arthropod to mammalian cells through interactions with an arthropod EVs-enriched marker Tsp29Fb

    Discovery of Exosomes From Tick Saliva and Salivary Glands Reveals Therapeutic Roles for CXCL12 and IL-8 in Wound Healing at the Tick–Human Skin Interface

    Get PDF
    © Copyright © 2020 Zhou, Tahir, Wang, Woodson, Sherman, Karim, Neelakanta and Sultana.Ticks secrete various anti-coagulatory, anti-vasoconstrictory, anti-inflammatory, and anti-platelet aggregation factors in their saliva at the bite site during feeding to evade host immunological surveillance and responses. For the first time, we report successful isolation of exosomes (small membrane-bound extracellular signaling vesicles) from saliva and salivary glands of partially fed or unfed ixodid ticks. Our data showed a novel role of these in vivo exosomes in the inhibition of wound healing via downregulation of C-X-C motif chemokine ligand 12 (CXCL12) and upregulation of interleukin-8 (IL-8). Cryo-electron microscopy (cryo-EM) analysis revealed that tick saliva and salivary glands are composed of heterogeneous populations of in vivo exosomes with sizes ranging from 30 to 200 nm. Enriched amounts of tick CD63 ortholog protein and heat shock protein 70 (HSP70) were evident in these exosomes. Treatment of human skin keratinocytes (HaCaT cells) with exosomes derived from tick saliva/salivary glands or ISE6 cells dramatically delayed cell migration, wound healing, and repair process. Wound healing is a highly dynamic process with several individualized processes including secretion of cytokines. Cytokine array profiling followed by immunoblotting and quantitative-PCR analysis revealed that HaCaT cells treated with exosomes derived from tick saliva/salivary glands or ISE6 cells showed enhanced IL-8 levels and reduced CXCL12 loads. Inhibition of IL-8 or CXCL12 further delayed exosome-mediated cell migration, wound healing, and repair process, suggesting a skin barrier protection role for these chemokines at the tick bite site. In contrast, exogenous treatment of CXCL12 protein completely restored this delay and enhanced the repair process. Taken together, our study provides novel insights on how tick salivary exosomes secreted in saliva can delay wound healing at the bite site to facilitate successful blood feeding
    corecore