2,455 research outputs found
A primary care Symptoms Clinic for patients with medically unexplained symptoms : pilot randomised trial
Peer reviewedPublisher PD
Feature importance for machine learning redshifts applied to SDSS galaxies
We present an analysis of importance feature selection applied to photometric
redshift estimation using the machine learning architecture Decision Trees with
the ensemble learning routine Adaboost (hereafter RDF). We select a list of 85
easily measured (or derived) photometric quantities (or `features') and
spectroscopic redshifts for almost two million galaxies from the Sloan Digital
Sky Survey Data Release 10. After identifying which features have the most
predictive power, we use standard artificial Neural Networks (aNN) to show that
the addition of these features, in combination with the standard magnitudes and
colours, improves the machine learning redshift estimate by 18% and decreases
the catastrophic outlier rate by 32%. We further compare the redshift estimate
using RDF with those from two different aNNs, and with photometric redshifts
available from the SDSS. We find that the RDF requires orders of magnitude less
computation time than the aNNs to obtain a machine learning redshift while
reducing both the catastrophic outlier rate by up to 43%, and the redshift
error by up to 25%. When compared to the SDSS photometric redshifts, the RDF
machine learning redshifts both decreases the standard deviation of residuals
scaled by 1/(1+z) by 36% from 0.066 to 0.041, and decreases the fraction of
catastrophic outliers by 57% from 2.32% to 0.99%.Comment: 10 pages, 4 figures, updated to match version accepted in MNRA
Glioblastoma stem cells
Glioblastomas are highly malignant primary brain tumors with one of the worst survival rates among all human cancers. With a more profound understanding of the cellular and molecular mechanisms of tumor initiation and acquired resistance to conventional radio- and chemotherapy, novel therapeutic targets might be discovered to optimize therapeutic approaches. In this regard, the identification of a small cellular subpopulation, called glioblastoma stem cell or stem-like cells or glioma-initiating cells or brain tumor propagating cells, has gained attention. In this article, we briefly summarize the current state of knowledge about this tumor cell population and discuss future directions for basic and clinical researc
Tuning target selection algorithms to improve galaxy redshift estimates
We showcase machine learning (ML) inspired target selection algorithms to
determine which of all potential targets should be selected first for
spectroscopic follow up. Efficient target selection can improve the ML redshift
uncertainties as calculated on an independent sample, while requiring less
targets to be observed. We compare the ML targeting algorithms with the Sloan
Digital Sky Survey (SDSS) target order, and with a random targeting algorithm.
The ML inspired algorithms are constructed iteratively by estimating which of
the remaining target galaxies will be most difficult for the machine learning
methods to accurately estimate redshifts using the previously observed data.
This is performed by predicting the expected redshift error and redshift offset
(or bias) of all of the remaining target galaxies. We find that the predicted
values of bias and error are accurate to better than 10-30% of the true values,
even with only limited training sample sizes. We construct a hypothetical
follow-up survey and find that some of the ML targeting algorithms are able to
obtain the same redshift predictive power with 2-3 times less observing time,
as compared to that of the SDSS, or random, target selection algorithms. The
reduction in the required follow up resources could allow for a change to the
follow-up strategy, for example by obtaining deeper spectroscopy, which could
improve ML redshift estimates for deeper test data.Comment: 16 pages, 9 figures, updated to match MNRAS accepted version. Minor
text changes, results unchange
New insights into acquired temozolomide resistance in glioblastoma?
This scientific commentary refers to âc-Myc-miR-29c-REV3L signalling pathway drives the acquisition of temozolomide resistance in glioblastoma' by Luo et al. (doi:10.1093/brain/awv287
Funktionelle und molekulare Charakterisierung von KaliumkanÀlen in hippocampalen Astrozyten
FĂŒr die Funktion von Astrozyten in der zerebralen Ionen-, Transmitter- und Metabolitenregulation sowie Kontrolle des zerebralen Blutflusses ist ihre hohe KaliumleitfĂ€higkeit essentiell. Unter pathophysiologischen Bedingungen kommt es oft zu einer lokalen Azidose und die homöosthatische Funktion von Astrozyten ist eingeschrĂ€nkt. Der Einfluss extrazellulĂ€rer Azidose auf die KaliumleitfĂ€higkeit von hippocampalen Astrozyten der Maus ist jedoch bislang unzureichend verstanden und wird in der vorliegenden Arbeit mit neurophysiologischen und molekularbiologischen Methoden untersucht. Hierzu erfolgen Patch-Clamp-Experimente an akut isolierten Astrozyten des murinem Hippocampus und einem heterologen Expressionssystem unter Applikation verschiedener pH-Werte und Ionenkanalmodulatoren, sowie molekularbiologische Experimente auf Transkriptionsebene mittels Einzelzell-RT-PCR und semiquantitativer RT-PCR. ExtrazellulĂ€re Azidifikation fĂŒhrte in Patch-Clamp-Experimenten zu einer Reduktion der astrozytĂ€ren Kaliumströme. Dies lieĂ sich in Experimenten an Kir4.1-transfizierten Zellen eines heterologen Expressionssystems nachvollziehen und erfolgt somit vermutlich durch Modulation von Kir-KanĂ€len. Nach Blockade von Kir-KanĂ€len fĂŒhrte eine Azidifikation zu einer VergröĂerung der residuellen KaliumleitfĂ€higkeit hippocampaler Astrozyten. Diese Aktivierung wurde durch Modulatoren von TREK-1-KanĂ€len aus der Familie der K2P-KanĂ€le nachgebildet. Molekularbiologische Experimente bestĂ€tigten die astrozytĂ€re Expression der K2P-KanĂ€le TREK-1 und TWIK-1, wĂ€hrend TASK-KanĂ€le nicht nachweisbar waren. Elektrophysiologisch und auf Transkriptionsbene fanden sich keine Hinweise auf eine funktionelle Expression von ASIC und TRPV1-KanĂ€len in hippocampalen Astrozyten. Zusammenfassend erlaubt die Zusammenstellung astrozytĂ€rer KaliumkanĂ€le die Tolerierung transienter Azidifikation
Anomaly detection for machine learning redshifts applied to SDSS galaxies
We present an analysis of anomaly detection for machine learning redshift
estimation. Anomaly detection allows the removal of poor training examples,
which can adversely influence redshift estimates. Anomalous training examples
may be photometric galaxies with incorrect spectroscopic redshifts, or galaxies
with one or more poorly measured photometric quantity. We select 2.5 million
'clean' SDSS DR12 galaxies with reliable spectroscopic redshifts, and 6730
'anomalous' galaxies with spectroscopic redshift measurements which are flagged
as unreliable. We contaminate the clean base galaxy sample with galaxies with
unreliable redshifts and attempt to recover the contaminating galaxies using
the Elliptical Envelope technique. We then train four machine learning
architectures for redshift analysis on both the contaminated sample and on the
preprocessed 'anomaly-removed' sample and measure redshift statistics on a
clean validation sample generated without any preprocessing. We find an
improvement on all measured statistics of up to 80% when training on the
anomaly removed sample as compared with training on the contaminated sample for
each of the machine learning routines explored. We further describe a method to
estimate the contamination fraction of a base data sample.Comment: 13 pages, 8 figures, 1 table, minor text updates to macth MNRAS
accepted versio
- âŠ