117 research outputs found

    A local mechanism mediates NAD-dependent protection of axon degeneration

    Get PDF
    Axon degeneration occurs frequently in neurodegenerative diseases and peripheral neuropathies. Important insight into the mechanisms of axon degeneration arose from findings that the degeneration of transected axons is delayed in Wallerian degeneration slow (Wlds) mice with the overexpression of a fusion protein with the nicotinamide adenine dinucleotide (NAD) synthetic enzyme, nicotinamide mononucleotide adenylyltransferase (Nmnat1). Although both Wlds and Nmnat1 themselves are functional in preventing axon degeneration in neuronal cultures, the underlying mechanism for Nmnat1- and NAD-mediated axon protection remains largely unclear. We demonstrate that NAD levels decrease in degenerating axons and that preventing this axonal NAD decline efficiently protects axons from degeneration. In support of a local protective mechanism, we show that the degeneration of axonal segments that have been separated from their soma could be prevented by the exogenous application of NAD or its precursor nicotinamide. Furthermore, we provide evidence that such Nmnat1/NAD-mediated protection is primarily mediated by their effects on local bioenergetics. Together, our results suggest a novel molecular pathway for axon degeneration

    Original article Sirt1-deficient mice exhibit an altered cartilage phenotype

    Get PDF
    tObjective: We previously demonstrated that Sirt1 regulates apoptosis in cartilage in vitro. Here weattempt to examine in vivo cartilage homeostasis, using Sirt1 total body knockout (KO) mice.Method: Articular cartilage was harvested from hind paws of 1-week and 3-week-old mice carrying wildtype (WT) or null Sirt1 gene. Knees of Sirt1 haploinsufficient mice also were examined, at 6 months. Jointcartilage was processed for histologic examination or biochemical analyses of chondrocyte cultures.Results: We found that articular cartilage tissue sections from Sirt1 KO mice up to 3 weeks of age exhibitedlow levels of type 2 collagen, aggrecan, and glycosaminoglycan content. In contrast, protein levels of MMP-13 were elevated in the Sirt1 KO mice, leading to a potential increase of cartilage breakdown, alreadyshown in the heterozygous mice. Additional results showed elevated chondrocyte apoptosis in Sirt1 KOmice, as compared to WT controls. In addition to these observations, PTP1b (protein tyrosine phosphataseb) was elevated in the Sirt1 KO mice, in line with previous reports.Conclusion: The findings from this animal model demonstrated that Sirt1 KO mice presented an alteredcartilage phenotype, with an elevated apoptotic process and a potential degradative cartilage process

    Original article Sirt1-deficient mice exhibit an altered cartilage phenotype

    Get PDF
    tObjective: We previously demonstrated that Sirt1 regulates apoptosis in cartilage in vitro. Here weattempt to examine in vivo cartilage homeostasis, using Sirt1 total body knockout (KO) mice.Method: Articular cartilage was harvested from hind paws of 1-week and 3-week-old mice carrying wildtype (WT) or null Sirt1 gene. Knees of Sirt1 haploinsufficient mice also were examined, at 6 months. Jointcartilage was processed for histologic examination or biochemical analyses of chondrocyte cultures.Results: We found that articular cartilage tissue sections from Sirt1 KO mice up to 3 weeks of age exhibitedlow levels of type 2 collagen, aggrecan, and glycosaminoglycan content. In contrast, protein levels of MMP-13 were elevated in the Sirt1 KO mice, leading to a potential increase of cartilage breakdown, alreadyshown in the heterozygous mice. Additional results showed elevated chondrocyte apoptosis in Sirt1 KOmice, as compared to WT controls. In addition to these observations, PTP1b (protein tyrosine phosphataseb) was elevated in the Sirt1 KO mice, in line with previous reports.Conclusion: The findings from this animal model demonstrated that Sirt1 KO mice presented an alteredcartilage phenotype, with an elevated apoptotic process and a potential degradative cartilage process

    SIRT1 decreases Lox-1-mediated foam cell formation in atherogenesis

    Get PDF
    Aims Endothelial activation, macrophage infiltration, and foam cell formation are pivotal steps in atherogenesis. Our aim in this study was to analyse the role of SIRT1, a class III deacetylase with important metabolic functions, in plaque macrophages and atherogenesis. Methods and results Using partial SIRT1 deletion in atherosclerotic mice, we demonstrate that SIRT1 protects against atherosclerosis by reducing macrophage foam cell formation. Peritoneal macrophages from heterozygous SIRT1 mice accumulate more oxidized low-density lipoprotein (oxLDL), thereby promoting foam cell formation. Bone marrow-restricted SIRT1 deletion confirmed that SIRT1 function in macrophages is sufficient to decrease atherogenesis. Moreover, we show that SIRT1 reduces the uptake of oxLDL by diminishing the expression of lectin-like oxLDL receptor-1 (Lox-1) via suppression of the NF-κB signalling pathway. Conclusion Our findings demonstrate protective effects of SIRT1 in atherogenesis and suggest pharmacological SIRT1 activation as a novel anti-atherosclerotic strategy by reducing macrophage foam cell formatio

    SIRT1 decreases Lox-1-mediated foam cell formation in atherogenesis

    Get PDF
    Aims Endothelial activation, macrophage infiltration, and foam cell formation are pivotal steps in atherogenesis. Our aim in this study was to analyse the role of SIRT1, a class III deacetylase with important metabolic functions, in plaque macrophages and atherogenesis. Methods and results Using partial SIRT1 deletion in atherosclerotic mice, we demonstrate that SIRT1 protects against atherosclerosis by reducing macrophage foam cell formation. Peritoneal macrophages from heterozygous SIRT1 mice accumulate more oxidized low-density lipoprotein (oxLDL), thereby promoting foam cell formation. Bone marrow-restricted SIRT1 deletion confirmed that SIRT1 function in macrophages is sufficient to decrease atherogenesis. Moreover, we show that SIRT1 reduces the uptake of oxLDL by diminishing the expression of lectin-like oxLDL receptor-1 (Lox-1) via suppression of the NF-kappaB signalling pathway. Conclusion Our findings demonstrate protective effects of SIRT1 in atherogenesis and suggest pharmacological SIRT1 activation as a novel anti-atherosclerotic strategy by reducing macrophage foam cell formation

    SIRT1 Regulates HIV Transcription via Tat Deacetylation

    Get PDF
    The human immunodeficiency virus (HIV) Tat protein is acetylated by the transcriptional coactivator p300, a necessary step in Tat-mediated transactivation. We report here that Tat is deacetylated by human sirtuin 1 (SIRT1), a nicotinamide adenine dinucleotide-dependent class III protein deacetylase in vitro and in vivo. Tat and SIRT1 coimmunoprecipitate and synergistically activate the HIV promoter. Conversely, knockdown of SIRT1 via small interfering RNAs or treatment with a novel small molecule inhibitor of the SIRT1 deacetylase activity inhibit Tat-mediated transactivation of the HIV long terminal repeat. Tat transactivation is defective in SIRT1-null mouse embryonic fibroblasts and can be rescued by expression of SIRT1. These results support a model in which cycles of Tat acetylation and deacetylation regulate HIV transcription. SIRT1 recycles Tat to its unacetylated form and acts as a transcriptional coactivator during Tat transactivation

    The Early Royal Society and Visual Culture

    Get PDF
    Recent studies have fruitfully examined the intersection between early modern science and visual culture by elucidating the functions of images in shaping and disseminating scientific knowledge. Given its rich archival sources, it is possible to extend this line of research in the case of the Royal Society to an examination of attitudes towards images as artefacts –manufactured objects worth commissioning, collecting and studying. Drawing on existing scholarship and material from the Royal Society Archives, I discuss Fellows’ interests in prints, drawings, varnishes, colorants, images made out of unusual materials, and methods of identifying the painter from a painting. Knowledge of production processes of images was important to members of the Royal Society, not only as connoisseurs and collectors, but also as those interested in a Baconian mastery of material processes, including a “history of trades”. Their antiquarian interests led to discussion of painters’ styles, and they gradually developed a visual memorial to an institution through portraits and other visual records.AH/M001938/1 (AHRC

    Cigarette smoke-induced autophagy is regulated by SIRT1-PARP-1-dependent mechanism: implication in pathogenesis of COPD

    Get PDF
    Autophagy is a fundamental cellular process that eliminates long-lived proteins and damaged organelles through lysosomal degradation pathway. Cigarette smoke (CS)-mediated oxidative stress induces cytotoxic responses in lung cells. However, the role of autophagy and its mechanism in CS-mediated cytotoxic responses is not known. We hypothesized that NAD(+)-dependent deacetylase, sirtuin 1 (SIRT1) plays an important role in regulating autophagy in response to CS. CS exposure resulted in induction of autophagy in lung epithelial cells, fibroblasts and macrophages. Pretreatment of cells with SIRT1 activator resveratrol attenuated CS-induced autophagy whereas the SIRT1 inhibitor, sirtinol, augmented CS-induced autophagy. Elevated levels of autophagy were induced by CS in the lungs of SIRT1 deficient mice. Inhibition of poly(ADP-ribose)-polymerase-1 (PARP-1) attenuated CS-induced autophagy via SIRT1 activation. These data suggest that the SIRT1-PARP-1 axis plays a critical role in the regulation of CS-induced autophagy and have important implications in understanding the mechanisms of CS-induced cell death and senescence

    Epigenetic regulation of caloric restriction in aging

    Get PDF
    The molecular mechanisms of aging are the subject of much research and have facilitated potential interventions to delay aging and aging-related degenerative diseases in humans. The aging process is frequently affected by environmental factors, and caloric restriction is by far the most effective and established environmental manipulation for extending lifespan in various animal models. However, the precise mechanisms by which caloric restriction affects lifespan are still not clear. Epigenetic mechanisms have recently been recognized as major contributors to nutrition-related longevity and aging control. Two primary epigenetic codes, DNA methylation and histone modification, are believed to dynamically influence chromatin structure, resulting in expression changes of relevant genes. In this review, we assess the current advances in epigenetic regulation in response to caloric restriction and how this affects cellular senescence, aging and potential extension of a healthy lifespan in humans. Enhanced understanding of the important role of epigenetics in the control of the aging process through caloric restriction may lead to clinical advances in the prevention and therapy of human aging-associated diseases

    Basic science232. Certolizumab pegol prevents pro-inflammatory alterations in endothelial cell function

    Get PDF
    Background: Cardiovascular disease is a major comorbidity of rheumatoid arthritis (RA) and a leading cause of death. Chronic systemic inflammation involving tumour necrosis factor alpha (TNF) could contribute to endothelial activation and atherogenesis. A number of anti-TNF therapies are in current use for the treatment of RA, including certolizumab pegol (CZP), (Cimzia ®; UCB, Belgium). Anti-TNF therapy has been associated with reduced clinical cardiovascular disease risk and ameliorated vascular function in RA patients. However, the specific effects of TNF inhibitors on endothelial cell function are largely unknown. Our aim was to investigate the mechanisms underpinning CZP effects on TNF-activated human endothelial cells. Methods: Human aortic endothelial cells (HAoECs) were cultured in vitro and exposed to a) TNF alone, b) TNF plus CZP, or c) neither agent. Microarray analysis was used to examine the transcriptional profile of cells treated for 6 hrs and quantitative polymerase chain reaction (qPCR) analysed gene expression at 1, 3, 6 and 24 hrs. NF-κB localization and IκB degradation were investigated using immunocytochemistry, high content analysis and western blotting. Flow cytometry was conducted to detect microparticle release from HAoECs. Results: Transcriptional profiling revealed that while TNF alone had strong effects on endothelial gene expression, TNF and CZP in combination produced a global gene expression pattern similar to untreated control. The two most highly up-regulated genes in response to TNF treatment were adhesion molecules E-selectin and VCAM-1 (q 0.2 compared to control; p > 0.05 compared to TNF alone). The NF-κB pathway was confirmed as a downstream target of TNF-induced HAoEC activation, via nuclear translocation of NF-κB and degradation of IκB, effects which were abolished by treatment with CZP. In addition, flow cytometry detected an increased production of endothelial microparticles in TNF-activated HAoECs, which was prevented by treatment with CZP. Conclusions: We have found at a cellular level that a clinically available TNF inhibitor, CZP reduces the expression of adhesion molecule expression, and prevents TNF-induced activation of the NF-κB pathway. Furthermore, CZP prevents the production of microparticles by activated endothelial cells. This could be central to the prevention of inflammatory environments underlying these conditions and measurement of microparticles has potential as a novel prognostic marker for future cardiovascular events in this patient group. Disclosure statement: Y.A. received a research grant from UCB. I.B. received a research grant from UCB. S.H. received a research grant from UCB. All other authors have declared no conflicts of interes
    corecore